Filters: Tags: total phosphorus (X)
40 results (22.6s)
Filters
Date Range
Extensions Types Contacts
Categories Tag Types
|
The dataset contains estimates for total phosphorus flux from wastewater treatment plants that discharge to surface water within the Red River of the North Basin in the United States and subbasins. Shapefiles defining the subbasins are available as part of the same data release in which these data are published. Estimates of wastewater treatment plant total phosphorus flux (or load) were calculated by Tammy Ivanhnenko for the years 1978, 1980, 1982, 1984, 1986, 1988, 1990, 1992, 1996, 2000, 2004, 2008, and 2012. Flux estimates were based on the average discharge from the wastewater treatment plants and treatment level, both reported as part of the U.S. Environmental Protection Agency's Clean Watershed Needs Survey,...
Reducing non-point source phosphorus (P) pollution is often necessary to improve water quality in agricultural streams. Soil total P (TP) concentrations and compaction are soil characteristics that can influence P losses to streams. The objective of this study was to compare these two soil characteristics among riparian forest buffers, grass filters, pastures with cattle fenced out of the stream, intensive rotational, rotational and continuously grazed pastures and row-cropped fields in three physiographic regions of Iowa. Soil TP and compaction for the seven riparian land-uses were determined in stream bank and surface riparian soils. Total P concentrations in stream bed material along the seven riparian land-uses...
Categories: Publication;
Types: Citation;
Tags: Bulk density,
Conservation practices,
Data Visualization & Tools,
Grazing practices,
Landscapes,
This dataset utilized available water-quality data from the Mississippi Department of Environmental Quality and streamflow from the U.S. Geological Survey to estimate total nitrogen and total phosphorus loads and changes in loads from water years 2008 through 2018. Nutrient loads and changes in loads were estimated at 22 state ambient water-quality network sites, and were estimated using LOADEST regression models, Beale-Ratio Estimator, or WRTDS (Weighted Regression on Time, Discharge, and Season). The method selected is based on the evaluation of the flux-bias statistic and use of multiple graphical tools through EGRET to identify and characterize issues with particular models for each given dataset and is included...
Categories: Data;
Tags: Mississippi,
USGS Science Data Catalog (SDC),
United States,
Water Quality,
annual loads,
The datasets provided here are the input data used to run the Seasonal Kendall Trend (SKT) tests and Weighted Regressions on Time, Discharge, and Season (WRTDS) models. SKT tests use "annualSamplingFreqs_allSites.csv" and "wqData_screenedSitesAll.csv" which includes, for all site-parameter combinations, information on annual sampling frequencies and the screened water-quality data, respectively. The WRTDS models use "DRB.wqdata.20200521.csv", "DRB.flow.20200610.zip", and "DRB.info.20200521.csv" for calibration which includes, for all site-parameter combinations, the water-quality data, streamflow data (as separate .csv files for each site), model specifications and site information, respectively. The multisource...
Categories: Data;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Ammonia,
Calcium,
Chloride,
Delaware,
Delaware River,
Impervious runoff-discharge to receiving streams is widely recognized as one of the leading factors contributing to ecological degradation in such streams. Although there are many factors that contribute to ecological degradation with increasing development adverse effects caused by runoff quality is widely recognized as a contributing factor. The objective of this study was to simulate the flows concentrations and loads of impervious-area runoff and stormflows from an undeveloped area over a range of impervious percentages and drainage areas to examine potential relations between these variables and the quantity and quality of downstream flows. Stormwater runoff in a hypothetical stream basin that represents hydrologic...
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Ecology,
Environmental Health,
Hydrology,
Land Use Change,
New England,
During water years 2016–2020, the U.S. Geological Survey, in cooperation with the Illinois Environmental Protection Agency, operated continuous monitoring stations on eight of the major rivers in Illinois to better quantify nutrient and sediment loadings from the State of Illinois to the Mississippi River. This data release presents estimates of daily nitrate, suspended sediment, and phosphorus concentrations and uncertainty from that period. The concentration estimates are based on a combination of discrete sampling data and surrogate regression (imputation). The data release comprises a single csv file containing daily timeseries of concentration and uncertainty for each monitoring station.
Categories: Data;
Tags: Hydrology,
Illinois,
USGS Science Data Catalog (SDC),
continuous monitoring,
nitrate,
Description of WorkThe Great Lakes Restoration Initiative (GLRI) was established to accelerate ecosystem restoration in the Great Lakes by confronting the most serious threats to the region, such as nonpoint source pollution, toxic sediments, and invasive species. Four Priority Watersheds have been targeted by the Regional Working Group's Phosphorus Reduction Work Group (Fox/Green Bay, Saginaw, Maumee, and Genesee) and are characterized by having a high density of agricultural land use and have ecosystem impairments that have been clearly identified. Monitoring is being conducted at the sub-watershed, edge-of-field, and subsurface-tile scale where monitoring locations are targeted to those areas within each watershed...
Categories: Project;
Tags: Assessment,
GLRI,
Governmental,
Great Lakes Restoration Initiative,
Has Spatial,
The dataset contains estimates of annual flow and annual flux in kilograms for six sites in the Red River of the North Basin (identified as basin 1, 2, 3, 4, 5, and 8). The shape files that are part of this data release document the basins and the streamgage locations are also provided in an associated shape file.
In 1991, the U.S. Geological Survey (USGS) began a study of more than 50 major river basins across the Nation as part of the National Water-Quality Assessment (NAWQA) project. One of the major goals of the NAWQA project was to determine how river water quality has changed over time. To support that goal, long-term consistent and comparable monitoring has been conducted by the USGS on streams and rivers throughout the Nation. Outside of the NAWQA project, the USGS and other Federal, State, and local agencies also have collected long-term water-quality data to support their own assessments of changing water quality. In 2017, data from these multiple sources were combined to support one of the most comprehensive assessments...
This USGS data release contains long-term mean annual total nitrogen and total phosphorus load estimates, and the model coefficients used to obtain the load estimates, for streams in the Midwest Region of the United States. The loads were estimated using the Fluxmaster program (Schwarz and others, 2006, https://pubs.usgs.gov/tm/2006/tm6b3) with a 5-parameter model and detrending to 2012 following the methods described in Saad and others, 2011 (https://doi.org/10.1111/j.1752-1688.2011.00575.x). A subset of these load estimates are described in Robertson and Saad, 2021 (https://doi.org/10.1111/1752-1688.12905) and were used to evaluate differences in load estimates in the Mississippi/Atchafalaya River Basin based...
The datasets provided here are the output from the Seasonal Kendall Trend (SKT) test and Weighted Regressions on Time, Discharge, and Season (WRTDS) model that characterize changes in water quality in rivers and streams across the Delaware River Basin. SKT results are compiled in "skt_out.csv" for all combinations of site, water-quality parameter, and trend period. WRTDS results are compiled in four datasets. If unspecified, generalized flow normalization (GFN) results are reported. Stationary flow normalization (SFN) results are indicated in the datasets. "wrtds_out_annResults.csv" contains the annual estimates of mean concentration and load and GFN and SFN estimates by site and parameter for the entire calibration...
Categories: Data;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Ammonia,
Calcium,
Chloride,
Delaware,
Delaware River,
During the 2018–20 water years, the U.S. Geological Survey, in cooperation with the Metropolitan Water Reclamation District of Greater Chicago, operated a continuous monitoring station on the Des Plaines River at Route 53 at Joliet, Illinois (USGS station 05537980), to better quantify nutrient and sediment loadings from the Greater Chicago Area to the Illinois River. This data release presents estimates of daily nitrate, suspended sediment, and phosphorus concentrations and uncertainty from that period. The concentration estimates are based on a combination of discrete sampling, continuously monitored surrogates, and surrogate regression (Bayesian imputation). The data release comprises a single csv file containing...
Categories: Data;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Des Plaines River,
Illinois,
Joliet,
USGS Science Data Catalog (SDC),
Water Quality,
The United States Geological Survey’s (USGS) SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was developed to aid in the interpretation of monitoring data and simulate water-quality conditions in streams across large spatial scales. SPARROW is a hybrid empirical/process-based mass balance model that can be used to estimate the major sources and environmental factors that affect the long-term supply, transport, and fate of contaminants in streams. The spatially explicit model structure is defined by a river reach network coupled with contributing catchments. The model is calibrated by statistically relating watershed sources and transport-related properties to monitoring-based streamflow...
|
![]() |