Skip to main content
Advanced Search

Filters: Tags: trends (X)

118 results (68ms)   

Filters
View Results as: JSON ATOM CSV
This paper summarizes the main results of a study on the costs of abatement of CO2 emissions in Brazil. It discusses three possible futures for the long run (2010 and 2025) activity of the Brazilian economy and -- with the help of a linear programming model for Brazil's energy sector -- three scenarios for energy production and use. One of these scenarios illustrates the possibility of halving future carbon emissions originating from energy generation and consumption, with relatively small increases in energy associated costs and investments. This abatement scenario would require, on the supply side of the Brazilian energy balance, increased amounts of hydropower, ethanol and bagasse from sugarcane, plus wood and...
Many of the most cost-effective options for reducing emissions of hydrofluorocarbons (HFCs) involve: reducing leaks; responsible handling practices; replacement with a substance with little or no global warming potential; or reducing the amount of the greenhouse gas (GHG) needed. Some of these options can be implemented immediately for quick emission reductions. However, because many of the types of equipment that rely on these gases have lifetimes ranging from 10 to 30 years, fully implementing these emission reductions can take decades. Reductions in HFC consumption, however, can generally be seen more immediately. Recent US proposals for climate legislation have considered limits on HFC consumption under a cap...
thumbnail
In 1991, the U.S. Geological Survey (USGS) began a study of more than 50 major river basins across the Nation as part of the National Water-Quality Assessment (NAWQA) project of the National Water-Quality Program. One of the major goals of the NAWQA project is to determine how water-quality conditions change over time. To support that goal, long-term consistent and comparable monitoring has been conducted on streams and rivers throughout the Nation. Outside of the NAWQA project, the USGS and other Federal, State, and local agencies also have collected long-term water-quality data to support their own assessments of changing water-quality conditions. Data from these multiple sources have been combined to support...
Trends are identified changes over time in the characteristics of groundwater and (or) surface water. The characteristics analyzed can include descriptions of both quantity and quality. The calculated trends are dependent upon the available data and the methods used to identify trends. (Updated 12/23/2015)
thumbnail
Groundwater-quality data collected between 1993 and 2015 were compiled from the U.S. Geological Survey (USGS) National Water Information System (NWIS) database for 722 wells in the San Joaquin Valley (SJV). Groundwater-quality data retrieved included lab analyses of complete major ion data (calcium, magnesium, sodium, potassium, chloride, sulfate, nitrate, alkalinity, bicarbonate, carbonate, silica, and TDS) for 613 samples, and an additional 109 samples with measured values of specific conductance. Most of these wells were sampled as part of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project or the USGS National Water Quality Assessment (NAWQA) Program. In addition...
thumbnail
In 1991, the U.S. Geological Survey (USGS) began a study of more than 50 major river basins across the Nation as part of the National Water-Quality Assessment (NAWQA) project of the National Water-Quality Program. One of the major goals of the NAWQA project is to determine how water-quality conditions change over time. To support that goal, long-term consistent and comparable monitoring has been conducted on streams and rivers throughout the Nation. Outside of the NAWQA project, the USGS also has collected long-term water-quality data to support additional assessments of changing water-quality conditions. These data have been combined to provide insight into how natural features and human activities have contributed...
thumbnail
The importance of monitoring shrublands to detect and understand changes through time is increasingly recognized as critical to management. This dataset focuses on ecological change observation over ten years of field observation at 134 plots within two sites that are located in Southwestern of Wyoming, USA from 2008-2018. At sites 1 and 3, 134 long-term field observation plots were measured annually from 2008 to 2018. General plot locations were selected in 2006 using segments and spectral clusters on QuickBird imagery to identify the best locations for representing the variability of the entire site (one QuickBird image). Ground measurements were conducted using ocular measurements with cover was estimated from...
thumbnail
This product consists of time-series calculations of anthropogenic characteristics derived for 16 data themes for multiple scales covering the conterminous United States. The characteristics are those which (a) have consistent data sources, and (b) have the potential to affect the water quality of streams and rivers. All 16 data themes are provided for Hydrologic Unit Code level-10 (HUC-10) boundaries (n = 15,458). Additionally, measures of land use and imperviousness are provided for U.S. Environmental Protection Agency (USEPA) Level 4 ecoregions (n = 967) and for U.S. counties (n = 3,109). The data may be scaled up to broader areas; that is, HUC-10 data may be scaled up to HUC-8, 6, 4, or HUC-2 areas, Level 4...
thumbnail
Groundwater quality data were collected in 5,000 wells between 1988-2001 by the National Water-Quality Assessment Project. About 1,500 of these wells were sampled again between 2002-2012 to evaluate decadal changes in groundwater quality. Monitoring wells, domestic supply wells, and some public supply wells were included in this study. All water was collected prior to treatment. Groundwater samples used to evaluate decadal change were collected from networks of wells with similar characteristics. Some networks, consisting of domestic or public supply wells, were used to assess changes in the quality of groundwater used for drinking water supply. Other networks, consisting of monitoring wells, assessed changes in...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2018. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability in river discharge....
This paper summarizes the main results of a study on the costs of abatement of CO2 emissions in Brazil. It discusses three possible futures for the long run (2010 and 2025) activity of the Brazilian economy and -- with the help of a linear programming model for Brazil's energy sector -- three scenarios for energy production and use. One of these scenarios illustrates the possibility of halving future carbon emissions originating from energy generation and consumption, with relatively small increases in energy associated costs and investments. This abatement scenario would require, on the supply side of the Brazilian energy balance, increased amounts of hydropower, ethanol and bagasse from sugarcane, plus wood and...
thumbnail
In 1991, the U.S. Geological Survey (USGS) began a study of more than 50 major river basins across the Nation as part of the National Water-Quality Assessment (NAWQA) project of the National Water-Quality Program. One of the major goals of the NAWQA project is to determine how water-quality conditions change over time. To support that goal, long-term consistent and comparable monitoring has been conducted on streams and rivers throughout the Nation. Outside of the NAWQA project, the USGS and other Federal, State, and local agencies also have collected long-term water-quality data to support their own assessments of changing water-quality conditions. Data from these multiple sources have been combined to support...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2016. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability in river discharge....
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring Network (RIM) stations for the period 1985 through 2018. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
In 1991, the U.S. Geological Survey (USGS) began a study of more than 50 major river basins across the Nation as part of the National Water-Quality Assessment (NAWQA) project of the National Water-Quality Program. One of the major goals of the NAWQA project is to determine how water-quality conditions change over time. To support that goal, long-term consistent and comparable monitoring has been conducted on streams and rivers throughout the Nation. Outside of the NAWQA project, the USGS also has collected long-term water-quality data to support additional assessments of changing water-quality conditions. These data have been combined to provide insight into how natural features and human activities have contributed...
thumbnail
Northeast (NE) Region. The U.S. Geological Survey Dakota Water Science Center, in cooperation with the Federal Highway Administration, is analyzing annual peak-flow data to determine if trends are present and provide attribution of trends where possible. This dataset contains four core comma separated values (csv) files (50-year monotonic, 75-year monotonic, 50-year change point, and 75-change point). Each of the four core csv files includes the USGS gage identifier, various statistical values, primary and secondary attribution, level of evidence, and comments/citations. The comments/citations column should include any sources, in addition to the statistical values in the csv, that were needed to decide on the correct...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring Network (RIM) stations for the period 1985 through 2017. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability...


map background search result map search result map Pesticide concentration and streamflow datasets used to evaluate pesticide trends in the Nation’s rivers and streams, 1992-2012 Daily streamflow datasets used to analyze trends in streamflow at sites also analyzed for trends in water quality and ecological condition in the Nation's rivers and streams (output) Pesticide concentration and streamflow datasets used to evaluate pesticide trends in the Nation’s rivers and streams, 1992-2012 (input) Water-quality and streamflow datasets used in the Weighted Regressions on Time, Discharge, and Season (WRTDS) models to determine trends in the Nation’s rivers and streams, 1972-2012(output) Modern groundwater-quality, depth, and well-construction data for selected wells in the San Joaquin Valley, California, 1993-2015 Data from Decadal Change in Groundwater Quality Web Site, 1988-2012 Chesapeake Bay Nontidal Network 1985-2016: Short- and long-term trends Changes in anthropogenic influences on streams and rivers in the conterminous U.S. over the last 40 years, derived for 16 data themes Chesapeake Bay River Input Monitoring Network 1985-2017: Short- and long-term trends Attributions for nonstationary peak streamflow records in the Northeast region, 1941-2015 and 1966-2015, and supporting information Chesapeake Bay River Input Monitoring Network 1985-2018: WRTDS input data Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2018 (ver. 2.0, May 2020) Long-term field observation of shrubland ecosystem in Wyoming, USA from 2008-2018 Long-term field observation of shrubland ecosystem in Wyoming, USA from 2008-2018 Modern groundwater-quality, depth, and well-construction data for selected wells in the San Joaquin Valley, California, 1993-2015 Chesapeake Bay Nontidal Network 1985-2016: Short- and long-term trends Chesapeake Bay River Input Monitoring Network 1985-2017: Short- and long-term trends Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2018 (ver. 2.0, May 2020) Chesapeake Bay River Input Monitoring Network 1985-2018: WRTDS input data Attributions for nonstationary peak streamflow records in the Northeast region, 1941-2015 and 1966-2015, and supporting information Pesticide concentration and streamflow datasets used to evaluate pesticide trends in the Nation’s rivers and streams, 1992-2012 Pesticide concentration and streamflow datasets used to evaluate pesticide trends in the Nation’s rivers and streams, 1992-2012 (input) Changes in anthropogenic influences on streams and rivers in the conterminous U.S. over the last 40 years, derived for 16 data themes Data from Decadal Change in Groundwater Quality Web Site, 1988-2012 Daily streamflow datasets used to analyze trends in streamflow at sites also analyzed for trends in water quality and ecological condition in the Nation's rivers and streams (output) Water-quality and streamflow datasets used in the Weighted Regressions on Time, Discharge, and Season (WRTDS) models to determine trends in the Nation’s rivers and streams, 1972-2012(output)