Skip to main content
Advanced Search

Filters: Tags: water budget (X)

154 results (16ms)   

Filters
Contacts (Less)
View Results as: JSON ATOM CSV
thumbnail
For his MS thesis, Brendan Rogers used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial grain. The model was run from 1895 to 2100 assuming that nitrogen demand from the plants was always met so that the nitrogen concentrations in various plant parts never dropped below their minimum reported values. A CO2 enhancement effect increased productivity and water use efficiency as the atmospheric CO2 concentration increased. Future climate change scenarios were generated through...
thumbnail
A Soil-Water-Balance (SWB) model was developed to estimate annual recharge and evapotranspiration (ET) for Fauquier County, Virginia, for the period 1996 through 2015. The model was developed as part of a study to assess groundwater availability in the fractured-rock aquifers underlying Fauquier County. The model is documented in the associated report, U.S. Geological Survey (USGS) Scientific Investigations Report 2019-5056. The model was calibrated by comparing annual base-flow estimates from the hydrograph separation technique PART to annual recharge estimates from the SWB model for available years of streamflow record at two sites (01643700 and 01656000) within the model area. Selected SWB model parameters were...
thumbnail
Climatic data are from Daymet (Thornton and others, 2016) and include maximum daily air temperature and total daily precipitation on a 1-km resolution; these data replace and update the original climate data used for the tool (Williamson and others, 2009).
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled ACCESS 1.0 Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled Global Climate Models (GCMs) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The 20 future climate scenarios consist of ten GCMs with RCP 4.5 and 8.5 each: ACCESS 1.0, CanESM2, CCSM4, CESM1-BGC, CMCC-CMS, CNRM-CM5, GFDL-CM3, HadGEM2-CC, HadGEM2-ES, and MIROC5. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme...
thumbnail
The integrated hydrologic-flow model, called the Osage Nation Integrated Hydrologic Model (ONIHM) was developed to assess water availability in the Osage Nation. This model was developed using the MODFLOW-One Water Hydrologic Model (MF-OWHM) code. The ONIHM was discretized into an orthogonal grid of 276 rows and 289 columns, and each grid cell measured 1,312.34 feet (ft) per side, with eight variably thick vertical layers that represented the alluvial and bedrock aquifers within the study area, including the Vamoosa-Ada aquifer and other minor bedrock aquifers deposited during the Pennsylvanian Period. The ONIHM was delineated into 128 water-balance subregions based on surface watersheds, land cover, and water supply...
thumbnail
The U.S. Geological Survey (USGS) developed a systematic, quantitative approach to prioritize candidate basins that can support the assessment and forecasting objectives of the major USGS water science programs. Candidate basins were the level-4 hydrologic units (HUC4) with some of the smaller HUC4s being combined (hereafter referred to as modified HUC4 basins). Candidate basins for the contiguous United States (CONUS) were grouped into 18 hydrologic regions. Thirty-three geospatial variables representing land use, climate change, water use, water-balance components, streamflow alteration, fire risk, and ecosystem sensitivity were initially considered to assist in ranking candidate basins for study. The two highest...
This community serves to document data and analysis collected by researchers within the Upper Midwest Water Science Center whose mission is to collect high-quality hydrologic data and conduct unbiased, scientifically sound studies of water resources within the Great Lakes and Upper Mississippi Basins. We strive to meet the changing needs of those who use our information—from the distribution, availability, and quality of our water resources to topic-oriented research that addresses current hydrological issues.
thumbnail
These data were compiled for/to modeling efforts for U.S. Bureau of Reclamation National Environmental Policy Act (NEPA) analyses for the Colorado River in Grand Canyon, Arizona. Objective(s) of our study were to create revised monthly Lake Powell elevations and outflows from Bureau of Reclamation Colorado River Mid-term Modeling System (CRMMS) traces that incorporate the alternatives in the sEIS documents and indicate when potential actions may occur and how that changes water movement and storage. These data represent monthly hydrologies for Lake Powell: inflow, outflow, and elevation forecasts for 2024-2027, as well as volumes of water in outflows for different water mangement strategies in NEPA supplemental...
thumbnail
Final Report - Executive Summary: This final project report is prepared to summarize the research project titled “Assessing evapotranspiration rate changes for proposed restoration of the forested uplands of the Desert Landscape Conservation Cooperatives (LCC)” for the Desert LCC of the Bureau of Reclamation as a requirement for closing out the project. This report includes the scope of work, summary of research project, results, and conclusions.Among all of the components of the terrestrial water cycle, evapotranspiration (ET) consumes the largest amount of water. Accurate estimation of ET is very important to understand the influence of ET to the hydrologic response of recharge and runoff processes in the water...
Categories: Data, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, ATMOSPHERE, ATMOSPHERE, ATMOSPHERIC WATER VAPOR, ATMOSPHERIC WATER VAPOR, All tags...
thumbnail
A sensitivity analysis of groundwater-recharge estimates from a water-budget model was completed for the islands of Oahu and Maui, Hawaii (Johnson and others, 2023). Results of the sensitivity analysis were used to quantify the relative importance of selected model parameters to recharge estimates for three moisture zones (dry, mesic, and wet) on Oahu and Maui. This shapefile contains the boundaries of the moisture zones and boundaries of the model subareas that were used in the model simulations for Oahu. The shapefile attribute information includes the names of the land-cover types assigned to model subareas and the mean annual recharge values determined for the model subareas for the baseline scenario of the...
thumbnail
In Alaska, recent research has identified particular areas of the state where both a lack of soil moisture and warming temperatures increase the likelihood of wildfire. While this is an important finding, this previous research did not take into account the important role that melting snow, ice, and frozen ground (permafrost) play in replenshing soil moisture in the spring and summer months. This project will address this gap in the characterization of fire risk using the newly developed monthly water balance model (MWBM). The MWBM takes into account rain, snow, snowmelt, glacier ice melt, and the permafrost layer to better calculate soil moisture replenishment and the amount of moisture that is lost to the atmosphere...
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers Engineer Research and Development Center and the U.S. Environmental Protection Agency, developed a predictive, mechanistic, three-dimensional hydrodynamic model for the St. Louis River Estuary (SLRE), Minnesota. This model was developed with Environmental Fluid Dynamics Code (EFDC), a grid-based, surface-water modeling package for simulating three-dimensional circulation, mass transport, sediments, and biogeochemical processes. The new model predicts discharge, water-surface elevations, flow velocity, and water temperature. The model was calibrated using data collected from April 2016 through November 2016 and validated with...
thumbnail
This part of the Data Release contains the raster representation of the water-level altitude and water-level change maps developed every 5 years from 1980-2015 for the upper Rio Grande Focus Area Study. The input point data used to generate the water-level altitude maps can be found in the "Groundwater level measurement data used to develop water-level altitude maps in the upper Rio Grande Alluvial Basins" child item of this data release. These digital data accompany Houston, N.A., Thomas, J.V., Foster, L.K., Pedraza, D.E., and Welborn, T.L., 2020, Hydrogeologic framework, groundwater-level altitudes, groundwater-level changes, and groundwater-storage changes in selected alluvial basins of the upper Rio Grande...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Abiquiu Reservoir, Ahumada, Alamosa, Alamosa County, Alamosa Creek, All tags...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui, Hawaii for a projected climate condition representative of phase 3 of the Coupled Model Intercomparison Project (CMIP3) A1B 2080-99 scenario climate and 2017 land cover, as described in USGS SIR 2019-5064. The water-budget components for each model subarea were computed for the future climate condition using a water-budget model developed by Johnson and others (2018). The 2017 land-cover map developed by Mair (2018) was used to define the land-cover conditions and the model subareas. The shapefile attribute information associated with each subarea (or polygon) present an estimate of mean...
thumbnail
These shapefiles represent the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui, Hawaii for a set of eight future climate and land-cover scenarios. The future climate conditions used in the water-budget analyses were derived from two end-of-century downscaled climate projections including (1) a projected future climate condition representative of phase 3 of the Coupled Model Intercomparison Project (CMIP3) A1B 2080-99 scenario climate described in Zhang and others (2016a, 2016b) and (2) a projected future climate condition representative of phase 5 of the Coupled Model Intercomparison Project (CMIP5) Representative Concentration Pathway 8.5 (RCP8.5) 2080-99 scenario...
thumbnail
The Water Availability Tool for Environmental Resources (WATER-KY; Williamson and others, 2009) provides the ability to simulate streamflow for ungaged basins. This model integrates TOPMODEL (Beven and Kirkby, 1979) for pervious portions of the landscape with simulation of flow generated from impervious surfaces (USDA, 1986). A restructured version of this decision support tool translates the abilities of WATER to a format that can be used without proprietary software (Williamson and others, 2021). Additional functionality has also been added to include hydrologic response units (HRUs) that are defined based on three fundamental land-use categories: forest, agricultural land, and developed areas, based on subsequent...
thumbnail
An integrated hydrologic-flow model, called the Central Platte Integrated Hydrologic Model, was constructed using the MODFLOW-One-Water Hydrologic Model code with the Newton solver. This code integrates climate, landscape, surface water, and groundwater-flow processes in a fully coupled approach. This study provided the Central Platte Natural Resources District (CPNRD) with an advanced numerical modeling tool to assist with the update of their Groundwater Management Plan by providing them information on modeled future GW levels under different climate scenarios and management practices. This tool will allow the CPNRD to evaluate other scenarios as management changes in the future. A predevelopment model simulated...
thumbnail
This digital dataset consists of monthly climate data from the Basin Characterization Model v8 (BCMv8) for the updated Central Valley Hydrologic Model (CVHM2) for water years 1922 to 2019. The BCMv8 data are available in a separate data release titled "The Basin Characterization Model - A regional water balance software package (BCMv8) data release and model archive for hydrologic California, water years 1896-2020". The data were modified by: (1) extracting the data from the data source for the relevant model domain and times, and (2) rescaling the 270-meter BCMv8 grid to the small watersheds that contribute boundary flow to the CVHM2 model for the hydrologic variables recharge and runoff. The three data pieces...
We enhanced the agro-hydrologic VegET model to include snow accumulation and melt processes and the separation of runoff into surface runoff and deep drainage. Driven by global weather datasets and parameterized by land surface phenology (LSP), the enhanced VegET model was implemented in the cloud to simulate daily soil moisture (SM), actual evapotranspiration (ETa), and runoff (R) for the conterminous United States (CONUS) and the Greater Horn of Africa (GHA). Evaluation of the VegET model with independent data showed satisfactory performance, capturing the temporal variability of SM (Pearson correlation r: 0.22–0.97), snowpack (r: 0.86–0.88), ETa (r: 0.41–0.97), and spatial variability of R (r: 0.81–0.90). Absolute...


map background search result map search result map Simulated potential PNW vegetation the Western 2/3 of Oregon and Washington under CSIRO Mk3 general circulation model run with the A2 SRES emission scenario (2070-2099 mode) using the MC1 dynamic global vegetation model Improving Characterizations of Future Wildfire Risk in Alaska Report and Publications: Assessing Evapotranspiration Rate Changes for Proposed Restoration of the Forested Uplands of the DLCC Soil-Water-Balance (SWB) model data sets for Fauquier County, Virginia, 1996 - 2015 Upper Midwest Water Science Center Mean annual water-budget components for the Island of Maui, Hawaii, for projected climate conditions, CMIP3 A1B 2080-99 scenario climate and 2017 land cover Groundwater-level altitude and groundwater-level change maps developed for the groundwater component of the upper Rio Grande Focus Area Study St. Louis River estuary (Minnesota-Wisconsin) EFDC hydrodynamic model for discharge and temperature simulations: 2016–17 Mean annual water-budget components for the Island of Maui, Hawaii, for a set of eight future climate and land-cover scenarios Water Availability Tool for Environmental Resources for the Commonwealth of Kentucky updated for 2019 - Climate Water Availability Tool for Environmental Resources for Haw Creek, Indiana Future Climate and Hydrology from Twenty Localized Constructed Analog (LOCA) Scenarios and the Basin Characterization Model (BCMv8) Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model ACCESS 1.0 Central Valley Hydrologic Model version 2 (CVHM2): Small Watershed Climate Data (Recharge, Runoff) MODFLOW-One Water Hydrologic Model integrated hydrologic-flow model used to evaluate water availability in the Osage Nation MODFLOW-One-Water model used to support the Central Platte Natural Resources District Groundwater Management Plan Data used to prioritize the selection of river basins for intensive monitoring and assessment by the U.S. Geological Survey Model subareas and moisture zones used in a sensitivity analysis of a water-budget model completed in 2022 for the island of Oahu, Hawaii Modelled Lake Powell releases and reservoir elevations under different alternative management scenarios Water Availability Tool for Environmental Resources for Haw Creek, Indiana Model subareas and moisture zones used in a sensitivity analysis of a water-budget model completed in 2022 for the island of Oahu, Hawaii Mean annual water-budget components for the Island of Maui, Hawaii, for projected climate conditions, CMIP3 A1B 2080-99 scenario climate and 2017 land cover Mean annual water-budget components for the Island of Maui, Hawaii, for a set of eight future climate and land-cover scenarios Soil-Water-Balance (SWB) model data sets for Fauquier County, Virginia, 1996 - 2015 MODFLOW-One Water Hydrologic Model integrated hydrologic-flow model used to evaluate water availability in the Osage Nation MODFLOW-One-Water model used to support the Central Platte Natural Resources District Groundwater Management Plan Modelled Lake Powell releases and reservoir elevations under different alternative management scenarios Groundwater-level altitude and groundwater-level change maps developed for the groundwater component of the upper Rio Grande Focus Area Study Water Availability Tool for Environmental Resources for the Commonwealth of Kentucky updated for 2019 - Climate Report and Publications: Assessing Evapotranspiration Rate Changes for Proposed Restoration of the Forested Uplands of the DLCC Central Valley Hydrologic Model version 2 (CVHM2): Small Watershed Climate Data (Recharge, Runoff) Simulated potential PNW vegetation the Western 2/3 of Oregon and Washington under CSIRO Mk3 general circulation model run with the A2 SRES emission scenario (2070-2099 mode) using the MC1 dynamic global vegetation model Future Climate and Hydrology from Twenty Localized Constructed Analog (LOCA) Scenarios and the Basin Characterization Model (BCMv8) Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model ACCESS 1.0 Upper Midwest Water Science Center Improving Characterizations of Future Wildfire Risk in Alaska Data used to prioritize the selection of river basins for intensive monitoring and assessment by the U.S. Geological Survey