Skip to main content
Advanced Search

Filters: Tags: water resource management (X) > Date Range: {"choice":"year"} (X)

18 results (43ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
This community serves to document data and analysis collected by researchers within the Upper Midwest Water Science Center whose mission is to collect high-quality hydrologic data and conduct unbiased, scientifically sound studies of water resources within the Great Lakes and Upper Mississippi Basins. We strive to meet the changing needs of those who use our information—from the distribution, availability, and quality of our water resources to topic-oriented research that addresses current hydrological issues.
thumbnail
The endangered Cape Sable seaside sparrow (Ammospiza maritima mirabilis; CSSS) occurs in marl prairie habitat at the southern end of the Everglades, at the southernmost part of the Florida peninsula. The locations of three of its six subpopulations are proximate to the coast, putting them at risk for inundation caused by sea level rise (SLR). The spatially explicit predictive model EverSparrow provides probability of CSSS presence estimates based on hydrology, fire history, and vegetation. We developed two hydrologic scenarios of SLR using projections from the U.S. Army Corps of Engineers (USACE) and University of Florida's GeoPlan Center, using a modeled restoration scenario of the current landscape-scale water...
thumbnail
Site data contained in the ScrIntrvls_AllSrcRefs_AllWellsRev.csv dataset define the top and bottom altitudes of well screens in 64,763 irrigation wells completed in the Mississippi River Valley alluvial aquifer (MRVA) that constitute a production zone in the Mississippi Alluvial Plain (MAP) extending across the midwestern and southern United States from Illinois to Louisiana. Each well entry contains an Enumerated Domain Value of the Attribute Label SrcRefNo to identify the state environmental agency that contributed to the database, and enumerated values are associated with specific state agencies by using the Enumerated Domain Value Definition. Screen-top and -bottom altitudes and land surface are referenced (corrected)...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 2020 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the areas classified...
thumbnail
The data in this data release are from an effort focused on understanding social vulnerability to water insecurity, resiliency demonstrated by institutions, and conflict or crisis around water resource management. This data release focuses on definitions and metrics of resilience in water management institutions. Water resource managers, at various scales, are tasked with making complex and time-sensitive decisions in the face of uncertainty, competing objectives, and difficult tradeoffs. To do this, they must incorporate data, tacit knowledge, cultural and organizational norms, and individual or institutional values in a way that maintains consistent and predictable operations under normal circumstances, while...
thumbnail
Managed aquifer recharge is a water-management strategy used to meet water demands during dry periods, or periods of high-water demand, when surface-water supplies are low. One method of managed aquifer recharge uses aquifer systems as subsurface reservoirs or ‘water banks’ to effectively and economically store surface water when surplus is available, and then recover the recharged groundwater to meet water demands during droughts. During these water shortages, increased groundwater pumpage can be used to offset shortfalls in surface-water supplies. Thus, surface-water reservoirs and water banks can be used conjunctively to effectively coordinate the use of groundwater and surface water. Data were compiled for ten...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 2020 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the areas classified...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 2020 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the areas classified...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 2020 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the areas classified...
thumbnail
The Missouri River system is the life-blood of the American Midwest, providing critical water resources that drive the region’s agriculture, industry, hydroelectric power generation, and ecosystems. The basin has a long history of development and diversion of water resources, meaning that streamflow records that reflect natural, unmanaged flows over the past century have been rare. As a result, research on the complex interactions between temperature and precipitation in driving droughts and surface water variability in the Missouri River Basin has lagged behind similar work done in other major basins in the country, and has hindered drought planning efforts. To address this need, researchers will use tree-rings...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 2020 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the areas classified...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 2020 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the areas classified...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 2020 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the areas classified...
thumbnail
Across the Southern Great Plains, increasing temperatures are expected to alter the hydrological functioning of the region by contributing to severe droughts, more intense rainfall events, and more severe flooding episodes. These changes could adversely affect human and ecological communities. The ability to better predict future changes in precipitation and the response of hydrologic systems in the region could help mitigate their negative impacts. Yet while today’s global climate models provide large-scale projections of future temperature and precipitation patterns that can be broadly useful for large-scale water resource planning, they are often not appropriate for use at a smaller, more local scale. This research...
thumbnail
Groundwater potentiometric-surface contours for spring 2022 (April 4 to 8, 2022) and autumn 2022 (October 30 to November 4, 2022) were created for the alluvial aquifer in Big Lost River Valley. The well numbers and station names used to create the potentiometric-surface contours and groundwater-level change maps are provided in this data release. The location, depth to water, and potentiometric-surface altitude for these wells can be accessed on USGS National Water Information System (NWIS) or Idaho Department of Water Resources (IDWR) groundwater portal. The interpreted 20-foot contours of the potentiometric-surface are also provided in this data release. The contours are referenced to the North American Vertical...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 2020 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the areas classified...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 2020 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the areas classified...
thumbnail
This dataset is part of the U.S. Geological Survey (USGS) Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) initiative. These data represent the location of dikes within the Upper Peninsula Restoration Assessment (UPRA) study area. An ArcGIS model (Python script) identified dikes as having a difference in elevation above a certain threshold. If the elevation difference was below a certain threshold, the area was not considered a dike. However, if the difference in elevation between two points was significantly high, then the area was marked as a dike. Areas continuous with each other were considered part of the same dike. Data underwent quality control (QC) procedures by having Subject Matter Experts and...


    map background search result map search result map Informing Hydrologic Planning in the Red River Valley through Improved Regional Climate Projections Upper Midwest Water Science Center Characterizing Historic Streamflow to Support Drought Planning in the Upper Missouri River Basin Digital surfaces and site data of well-screen top and bottom altitudes defining the irrigation production zone of the Mississippi River Valley alluvial aquifer within the Mississippi Alluvial Plain project region Central Valley Hydrologic Model version 2 (CVHM2): Water Banking for water years 1961-2019 (ver. 2.0, Aug 2023) Sea level rise scenarios for the Cape Sable seaside sparrow Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) Upper Peninsula, U.S.: Dikes Groundwater potentiometric-surface contours and well numbers used to map groundwater potentiometric-surface altitude in 2022 and groundwater-level changes between 1968, 1991, and 2022 in the alluvial aquifer in the Big Lost River Valley, south-central Idaho Metrics of Resilience in Water Management Institutions in the Upper Colorado and Delaware River Basins, United States 2022 2020 Aquatic Areas - Upper Mississippi River System 2020 Aquatic Areas - Upper Mississippi River System - Open River 2 2020 Aquatic Areas - Upper Mississippi River System - La Grange Pool 2020 Aquatic Areas - Upper Mississippi River System - Pool 04 2020 Aquatic Areas - Upper Mississippi River System - Pool 08 2020 Aquatic Areas - Upper Mississippi River System - Pool 09 2020 Aquatic Areas - Upper Mississippi River System - Pool 12 2020 Aquatic Areas - Upper Mississippi River System - Pool 13 2020 Aquatic Areas - Upper Mississippi River System - Pool 26 2020 Aquatic Areas - Upper Mississippi River System - Pool 12 2020 Aquatic Areas - Upper Mississippi River System - Pool 09 2020 Aquatic Areas - Upper Mississippi River System - Pool 26 2020 Aquatic Areas - Upper Mississippi River System - Pool 13 2020 Aquatic Areas - Upper Mississippi River System - Pool 04 2020 Aquatic Areas - Upper Mississippi River System - Open River 2 Sea level rise scenarios for the Cape Sable seaside sparrow 2020 Aquatic Areas - Upper Mississippi River System - La Grange Pool Groundwater potentiometric-surface contours and well numbers used to map groundwater potentiometric-surface altitude in 2022 and groundwater-level changes between 1968, 1991, and 2022 in the alluvial aquifer in the Big Lost River Valley, south-central Idaho Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) Upper Peninsula, U.S.: Dikes Central Valley Hydrologic Model version 2 (CVHM2): Water Banking for water years 1961-2019 (ver. 2.0, Aug 2023) Digital surfaces and site data of well-screen top and bottom altitudes defining the irrigation production zone of the Mississippi River Valley alluvial aquifer within the Mississippi Alluvial Plain project region 2020 Aquatic Areas - Upper Mississippi River System Upper Midwest Water Science Center Metrics of Resilience in Water Management Institutions in the Upper Colorado and Delaware River Basins, United States 2022 Characterizing Historic Streamflow to Support Drought Planning in the Upper Missouri River Basin Informing Hydrologic Planning in the Red River Valley through Improved Regional Climate Projections