Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: water supply: analysis (X)

5 results (126ms)   

View Results as: JSON ATOM CSV
thumbnail
Stable isotopes of delta(18)O, delta(2)H, and (13)C, radiogenic isotopes of (14)C and (3)H, and ground water chemical compositions were used to distinguish ground water, recharge areas, and possible recharge processes in an arid zone, fault-bounded alluvial aquifer. Recharge mainly occurs through exposed stream channel beds as opposed to subsurface inflow along mountain fronts. This recharge distribution pattern may also occur in other fault-bounded aquifers, with important implications for conceptualization of ground water flow systems, development of ground water models, and ground water resource management. Ground water along the mountain front near the basin margins contains low delta(18)O, (14)C (percent modern...
Water introduced to surface drainages, such as agricultural and roadway runoff, mine drainage, or coalbed natural gas (CBNG)-produced water, potentially can be of environmental concern. In order to mitigate potential environmental effects, it may be important to be able to trace water discharged to the surface as it infiltrates and interacts with near-surface aquifers. We have chosen to study water withdrawn during CBNG production for isotope tracing in the hyporheic zone because it poses a variety of economic, environmental, and policy issues in the Rocky Mountain states. Ground water quality must be protected as CBNG water is added to semiarid ecosystems. Strontium (Sr) isotopes are effective fingerprints of the...
A study using multiple techniques provided insight into tectonic influences on ground water systems; the results can help to understand ground water systems in the tectonically active western United States and other parts of the world. Ground water in the San Bernardino Valley (Arizona, United States and Sonora, Mexico) is the main source of water for domestic use, cattle ranching (the primary industry), and the preservation of threatened and endangered species. To improve the understanding of ground water occurrence, movement, and sustainability, an investigation was conducted using a number of complementary methods, including major ion geochemistry, isotope hydrology, analysis of gases dissolved in ground water,...
Stable isotope values of hydrogen and oxygen from precipitation and ground water samples were compared by using a volumetrically based mixing equation and stable isotope gradient to estimate the season and location of recharge in four basins. Stable isotopes were sampled at 11 precipitation sites of differing elevation during a 2-year period to quantify seasonal stable isotope contributions as a function of elevation. Supplemental stable isotope data collected by the International Atomic Energy Association during a 14-year period were used to reduce annual variability of the mean seasonal stable isotope data. The stable isotope elevation relationships and local precipitation elevation relationships were combined...
thumbnail
Analysis of a typical semiarid mountain system recharge (MSR) setting demonstrates that geochemical tracers help resolve the location, rate, and seasonality of recharge as well as ground water flowpaths and residence times. MSR is defined as the recharge at the mountain front that dominates many semiarid basins plus the often-overlooked recharge through the mountain block that may be a significant ground water resource; thus, geochemical measurements that integrate signals from all flowpaths are advantageous. Ground water fluxes determined from carbon-14 ((14)C) age gradients imply MSR rates between 2 x 10(6) and 9 x 10(6) m(3)/year in the Upper San Pedro Basin, Arizona, USA. This estimated range is within an order...


    map background search result map search result map Geochemical quantification of semiarid mountain recharge. Ground water recharge and flow characterization using multiple isotopes. Geochemical quantification of semiarid mountain recharge. Ground water recharge and flow characterization using multiple isotopes.