Skip to main content
Advanced Search

Filters: Tags: wetland loss (X)

89 results (59ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The dataset presented here represents a circa 1987 land/water delineation of coastal Louisiana used in part of a larger study to quantify landscape changes from 1932 to 2016. The dataset contains two categories, land and water. For the purposes of this effort, land includes areas characterized by emergent vegetation, upland, wetland forest, or scrub-shrub were classified as land, while open water, aquatic beds, and mudflats were classified as water. For additional information regarding this dataset, refer to USGS SIM 3381.
thumbnail
The dataset presented here represents a circa 2014 land/water delineation of coastal Louisiana used in part of a larger study to quantify landscape changes from 1932 to 2016. The dataset contains two categories, land and water. For the purposes of this effort, land includes areas characterized by emergent vegetation, upland, wetland forest, or scrub-shrub were classified as land, while open water, aquatic beds, and mudflats were classified as water. For additional information regarding this dataset, refer to USGS SIM 3381.
Prior research has shown that sediment budgets, and therefore stability, of microtidal marsh complexes scale with areal unvegetated to vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. This effort has developed the UVVR metric using readily available satellite imagery for the coastal areas of the contiguous United States (CONUS). These datasets provide annual averages of 1) developed, 2) vegetated, 3) unvegetated ratios and 4) an unvegetated to vegetated ratio (UVVR) at 30-meter resolution over the coastal areas of the contiguous United States for the years 2014-2018. Additionally, multi-year average values of vegetated ratio, its standard...
Prior research has shown that sediment budgets, and therefore stability, of microtidal marsh complexes scale with areal unvegetated to vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. This effort has developed the UVVR metric using readily available satellite imagery for the coastal areas of the contiguous United States (CONUS). These datasets provide annual averages of 1) developed, 2) vegetated, 3) unvegetated ratios and 4) an unvegetated to vegetated ratio (UVVR) at 30-meter resolution over the coastal areas of the contiguous United States for the years 2014-2018. Additionally, multi-year average values of vegetated ratio, its standard...
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
thumbnail
The dataset presented here represents a circa 2015 land/water delineation of coastal Louisiana used in part of a larger study to quantify landscape changes from 1932 to 2016. The dataset contains two categories, land and water. For the purposes of this effort, land includes areas characterized by emergent vegetation, upland, wetland forest, or scrub-shrub were classified as land, while open water, aquatic beds, and mudflats were classified as water. For additional information regarding this dataset, refer to USGS SIM 3381.
Prior research has shown that sediment budgets, and therefore stability, of microtidal marsh complexes scale with areal unvegetated to vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. This effort has developed the UVVR metric using readily available satellite imagery for the coastal areas of the contiguous United States (CONUS). These datasets provide annual averages of 1) developed, 2) vegetated, 3) unvegetated ratios and 4) an unvegetated to vegetated ratio (UVVR) at 30-meter resolution over the coastal areas of the contiguous United States for the years 2014-2018. Additionally, multi-year average values of vegetated ratio, its standard...
Prior research has shown that sediment budgets, and therefore stability, of microtidal marsh complexes scale with areal unvegetated to vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. This effort has developed the UVVR metric using readily available satellite imagery for the coastal areas of the contiguous United States (CONUS). These datasets provide annual averages of 1) developed, 2) vegetated, 3) unvegetated ratios and 4) an unvegetated to vegetated ratio (UVVR) at 30-meter resolution over the coastal areas of the contiguous United States for the years 2014-2018. Additionally, multi-year average values of vegetated ratio, its standard...
Prior research has shown that sediment budgets, and therefore stability, of microtidal marsh complexes scale with areal unvegetated to vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. This effort has developed the UVVR metric using readily available satellite imagery for the coastal areas of the contiguous United States (CONUS). These datasets provide annual averages of 1) developed, 2) vegetated, 3) unvegetated ratios and 4) an unvegetated to vegetated ratio (UVVR) at 30-meter resolution over the coastal areas of the contiguous United States for the years 2014-2018. Additionally, multi-year average values of vegetated ratio, its standard...
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
Prior research has shown that sediment budgets, and therefore stability, of microtidal marsh complexes scale with areal unvegetated to vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. This effort has developed the UVVR metric using readily available satellite imagery for the coastal areas of the contiguous United States (CONUS). These datasets provide annual averages of 1) developed, 2) vegetated, 3) unvegetated ratios and 4) an unvegetated to vegetated ratio (UVVR) at 30-meter resolution over the coastal areas of the contiguous United States for the years 2014-2018. Additionally, multi-year average values of vegetated ratio, its standard...
These datasets were created from high-resolution (1-m) datasets representing median conditions during a 2014-2019 time period. These datasets used National Agricultural Inventory Program (NAIP) imagery, as well as Sentinel-2 satellite imagery, to estimate the fractional composition of unvegetated, vegetated, and water in each pixel. Random samples from these high resolution datasets were used to inform calibration and validation of the moderate resolution (30-m) Landsat datasets. To facilitate comparability with the Landsat datasets, these data were aggregated up to 30-m resolution.
These datasets were created from high-resolution (1-m) datasets representing median conditions during a 2014-2019 time period. These datasets used National Agricultural Inventory Program (NAIP) imagery, as well as Sentinel-2 satellite imagery, to estimate the fractional composition of unvegetated, vegetated, and water in each pixel. Random samples from these high resolution datasets were used to inform calibration and validation of the moderate resolution (30-m) Landsat datasets. To facilitate comparability with the Landsat datasets, these data were aggregated up to 30-m resolution.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.


map background search result map search result map Circa 1988 Land Area in Coastal Louisiana - Spatial Data - Landsat TM Circa 2014 Land Area in Coastal Louisiana - Spatial Data - Landsat TM Circa 2015 Land Area in Coastal Louisiana - Spatial Data - Landsat TM An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the United States - 2018 An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the Atlantic Coast - 2014 An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the Atlantic Coast - 2016 An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the Atlantic Coast - 2017 An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the Gulf of Mexico Coast - 2017 An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the Gulf of Mexico Coast - 2016 A NAIP and Sentinel-2 based quantification of fractional composition of unvegetated, vegetated, and water in the Atlantic Coast, 2014-2019 used for calibration and validation of Landsat based datasets A NAIP and Sentinel-2 based quantification of fractional composition of unvegetated, vegetated, and water in the Pacific Coast, 2014-2019 used for calibration and validation of Landsat based datasets L5_1986_GOM_Fractional_Land_FAV_SAV_Water L5_1988_GOM_Fractional_Land_FAV_SAV_Water L5_1993_GOM_Fractional_Land_FAV_SAV_Water L5_1994_GOM_Fractional_Land_FAV_SAV_Water L5_1998_GOM_Fractional_Land_FAV_SAV_Water L5_2003_GOM_Fractional_Land_FAV_SAV_Water L8_2015_GOM_Fractional_Land_FAV_SAV_Water L8_2018_GOM_Fractional_Land_FAV_SAV_Water L8_2020_GOM_Fractional_Land_FAV_SAV_Water Circa 2014 Land Area in Coastal Louisiana - Spatial Data - Landsat TM Circa 2015 Land Area in Coastal Louisiana - Spatial Data - Landsat TM Circa 1988 Land Area in Coastal Louisiana - Spatial Data - Landsat TM A NAIP and Sentinel-2 based quantification of fractional composition of unvegetated, vegetated, and water in the Pacific Coast, 2014-2019 used for calibration and validation of Landsat based datasets An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the Gulf of Mexico Coast - 2017 An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the Gulf of Mexico Coast - 2016 L5_1986_GOM_Fractional_Land_FAV_SAV_Water L5_1988_GOM_Fractional_Land_FAV_SAV_Water L5_1993_GOM_Fractional_Land_FAV_SAV_Water L5_1994_GOM_Fractional_Land_FAV_SAV_Water L5_1998_GOM_Fractional_Land_FAV_SAV_Water L5_2003_GOM_Fractional_Land_FAV_SAV_Water L8_2015_GOM_Fractional_Land_FAV_SAV_Water L8_2018_GOM_Fractional_Land_FAV_SAV_Water L8_2020_GOM_Fractional_Land_FAV_SAV_Water An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the Atlantic Coast - 2014 An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the Atlantic Coast - 2016 An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the Atlantic Coast - 2017 A NAIP and Sentinel-2 based quantification of fractional composition of unvegetated, vegetated, and water in the Atlantic Coast, 2014-2019 used for calibration and validation of Landsat based datasets An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the United States - 2018