Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: wild fire (X)

9 results (38ms)   

View Results as: JSON ATOM CSV
thumbnail
For his MS thesis, Brendan Rogers used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial grain. The model was run from 1895 to 2100 assuming that nitrogen demand from the plants was always met so that the nitrogen concentrations in various plant parts never dropped below their minimum reported values. A CO2 enhancement effect increased productivity and water use efficiency as the atmospheric CO2 concentration increased. Future climate change scenarios were generated through...
thumbnail
For his MS thesis, Brendan Rogers used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial grain. The model was run from 1895 to 2100 assuming that nitrogen demand from the plants was always met so that the nitrogen concentrations in various plant parts never dropped below their minimum reported values. A CO2 enhancement effect increased productivity and water use efficiency as the atmospheric CO2 concentration increased. Future climate change scenarios were generated through...
thumbnail
For his MS thesis, Brendan Rogers used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial grain. The model was run from 1895 to 2100 assuming that nitrogen demand from the plants was always met so that the nitrogen concentrations in various plant parts never dropped below their minimum reported values. A CO2 enhancement effect increased productivity and water use efficiency as the atmospheric CO2 concentration increased. Future climate change scenarios were generated through...
thumbnail
For his MS thesis, Brendan Rogers used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial grain. The model was run from 1895 to 2100 assuming that nitrogen demand from the plants was always met so that the nitrogen concentrations in various plant parts never dropped below their minimum reported values. A CO2 enhancement effect increased productivity and water use efficiency as the atmospheric CO2 concentration increased. Future climate change scenarios were generated through...
thumbnail
For his MS thesis, Brendan Rogers used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial grain. The model was run from 1895 to 2100 assuming that nitrogen demand from the plants was always met so that the nitrogen concentrations in various plant parts never dropped below their minimum reported values. A CO2 enhancement effect increased productivity and water use efficiency as the atmospheric CO2 concentration increased. Future climate change scenarios were generated through...
thumbnail
For his MS thesis, Brendan Rogers used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial grain. The model was run from 1895 to 2100 assuming that nitrogen demand from the plants was always met so that the nitrogen concentrations in various plant parts never dropped below their minimum reported values. A CO2 enhancement effect increased productivity and water use efficiency as the atmospheric CO2 concentration increased. Future climate change scenarios were generated through...
thumbnail
For his MS thesis, Brendan Rogers used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial grain. The model was run from 1895 to 2100 assuming that nitrogen demand from the plants was always met so that the nitrogen concentrations in various plant parts never dropped below their minimum reported values. A CO2 enhancement effect increased productivity and water use efficiency as the atmospheric CO2 concentration increased. Future climate change scenarios were generated through...
thumbnail
For his MS thesis, Brendan Rogers used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial grain. The model was run from 1895 to 2100 assuming that nitrogen demand from the plants was always met so that the nitrogen concentrations in various plant parts never dropped below their minimum reported values. A CO2 enhancement effect increased productivity and water use efficiency as the atmospheric CO2 concentration increased. Future climate change scenarios were generated through...
thumbnail
Historical wildland fire perimeters. Contains fires greater than 1,000 acres between 1950 and 1987, inclusive, and fires greater than 100 acres between 1988 and 2006, inclusive. Also contains 10 meter buffers around reported start locations of fires for which no perimeter has been located.


    map background search result map search result map Simulated potential historical (1971-2000) vegetation (mode) for the western 2/3 of Oregon and Washington using MC1 DGVM (dynamic global vegetation model) Simulated potential PNW vegetation for the Western 2/3 of Oregon and Washington under the Hadley CM3 general circulation model run with the A2 SRES emission scenario (2070-2099 mode) using the MC1 dynamic global vegetation model Simulated potential PNW vegetation the Western 2/3 of Oregon and Washington under CSIRO Mk3 general circulation model run with the A2 SRES emission scenario (2070-2099 mode) using the MC1 dynamic global vegetation model Simulated potential PNW vegetation the Western 2/3 of Oregon and Washington under MIROC 3.2 medres general circulation model run with the A2 SRES emission scenario (2070-2099 mode) using the MC1 dynamic global vegetation model Alaska Fire History (1950 - 2006) - Acres Burned Simulated potential PNW vegetation the Western 2/3 of Oregon and Washington under MIROC 3.2 medres general circulation model run with the A2 SRES emission scenario (2070-2099 mode) using the MC1 dynamic global vegetation model Simulated potential PNW vegetation for the Western 2/3 of Oregon and Washington under the Hadley CM3 general circulation model run with the A2 SRES emission scenario (2070-2099 mode) using the MC1 dynamic global vegetation model Simulated potential PNW vegetation the Western 2/3 of Oregon and Washington under CSIRO Mk3 general circulation model run with the A2 SRES emission scenario (2070-2099 mode) using the MC1 dynamic global vegetation model Simulated potential historical (1971-2000) vegetation (mode) for the western 2/3 of Oregon and Washington using MC1 DGVM (dynamic global vegetation model) Simulated potential PNW vegetation for the Western 2/3 of Oregon and Washington under the Hadley CM3 general circulation model run with the A2 SRES emission scenario (2070-2099 mode) using the MC1 dynamic global vegetation model Simulated potential PNW vegetation the Western 2/3 of Oregon and Washington under CSIRO Mk3 general circulation model run with the A2 SRES emission scenario (2070-2099 mode) using the MC1 dynamic global vegetation model Simulated potential PNW vegetation the Western 2/3 of Oregon and Washington under MIROC 3.2 medres general circulation model run with the A2 SRES emission scenario (2070-2099 mode) using the MC1 dynamic global vegetation model Simulated potential historical (1971-2000) vegetation (mode) for the western 2/3 of Oregon and Washington using MC1 DGVM (dynamic global vegetation model) Simulated potential PNW vegetation the Western 2/3 of Oregon and Washington under MIROC 3.2 medres general circulation model run with the A2 SRES emission scenario (2070-2099 mode) using the MC1 dynamic global vegetation model Simulated potential PNW vegetation for the Western 2/3 of Oregon and Washington under the Hadley CM3 general circulation model run with the A2 SRES emission scenario (2070-2099 mode) using the MC1 dynamic global vegetation model Simulated potential PNW vegetation the Western 2/3 of Oregon and Washington under CSIRO Mk3 general circulation model run with the A2 SRES emission scenario (2070-2099 mode) using the MC1 dynamic global vegetation model Simulated potential historical (1971-2000) vegetation (mode) for the western 2/3 of Oregon and Washington using MC1 DGVM (dynamic global vegetation model) Alaska Fire History (1950 - 2006) - Acres Burned