Skip to main content
Advanced Search

Filters: Tags: williston basin (X)

91 results (77ms)   

View Results as: JSON ATOM CSV
thumbnail
Shallow subsurface electrical conductivity was mapped at Norman Lake National Wildlife Refuge (NWR) in northwest North Dakota using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2018. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 41 line-kilometers (km) of data were acquired over an area of approximately 2 square-kilometers. At this survey location, the 4m transmitter-receiver horizontal co-panar and perpendicular coil orientations did not function due to equipment malfunction. Data were manually edited to remove sensor dropouts,...
thumbnail
The lake and reservoir water-quality data were compiled from Water Quality Portal (https://www.waterqualitydata.us/) (National Water Quality Monitoring Council, 2015), USGS’s NAWQA Project’s data compilation (Oelsner and others, 2017) and the Montana Bureau of Mines and Geology (Montana Bureau of Mines, 2021), The compilation contains data for chloride, pH, specific conductance, sulfate, total dissolved solids (TDS) collected between water year 1970 to 2014. In addition 10 metals (aluminum, arsenic, barium, chromium, copper, iron, lead, selenium strontium, and zinc) analyzed during water years 1993 through 2014. National Water-Quality Monitoring Council, 2015, Water Quality Portal: National Water-Quality Monitoring...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the Fox Hills aquifer in the Williston structural basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the Upper Hell Creek hydrogeologic unit in the Williston structural basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
Basal heat flow from the crystalline basement and lithospheric mantle into the sedimentary column is a required boundary condition in the petroleum systems model. The model uses two basal heat flow conditions that are described using two ASCII grids that show map variations in heat flow (mW/m2). The “BHF000_BasalHeatFlow_Calib.asc” grid describes the modern-day basal heat flow calibrated to, and derived from subsurface temperature data, including 24 high-resolution static temperature logs from the North Dakota Geological Survey and a large proprietary dataset (>1,000) of drill stem test (DST) and bottom hole temperatures (BHT) from boreholes throughout Montana and North Dakota provided by IHS Markit ® (2022). This...
thumbnail
The model layer facies grids describe geographic variations in lithology mixtures (facies) used in the 3D petroleum systems model of the Williston Basin. The grids provide constraints on the physical properties used in the model simulation, including mechanical compaction, thermal conductivity, heat capacity, radiogenic heat, porosity and permeability trends, diagenesis, and capillary entry pressures. The grids were derived from borehole geophysical log signatures from two key model layers: the middle member of the Devonian-Mississippian Bakken Formation and the Upper Ordovician Icebox Formation. All the other model layers used a single lithology mixture and were not represented by gridded facies maps. This is a...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the middle Fort Union hydrogeologic unit in the Williston structural basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the thickness, in feet, of the lower Fort Union aquifer in the Williston structural basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the interpretations from borehole electric (resistivity) logs from oil and gas wells and lithologic logs from nearby water wells. These interpretations were used to build the hydrogeologic framework in the Williston structural basin. The resistivity logs were used to identify the hydrogeologic units (fig. 3A of SIR 2014-5047) and to quantify the vertical detailed lithology (thickness of sand, coal, gravel, silt,...
thumbnail
This dataset provides a compilation of the wetland characteristics, water quality, and aquatic macroinvertebrate community metric data collected from 159 wetlands in Montana and North Dakota within the Prairie Pothole Region of the Williston Basin .
thumbnail
This data release includes the model input and output files for the 3D petroleum systems model of the Williston Basin. The model was created in Schlumberger's PetroMod version 2020.1. The enclosed folders are standard PetroMod format and contain all data necessary for defining and re-simulating the model. Please contact Tim Nesheim at the North Dakota Geologic Survey (tonesheim@nd.gov) directly for static temperature log data used in the temperature calibration. Proprietary IHS Markit ® (2022) data used for model calibration are also not included in this data release. This is a child item of a larger data release titled "Data release for the 3D petroleum systems model of the Williston Basin, USA".
thumbnail
The thermal maturity grids are results generated from the petroleum systems model for five major source rock intervals, which include, from youngest to oldest, the Tyler, Mission Canyon, upper part of the Bakken, Red River, and Icebox Formations. The units are in equivalent vitrinite reflectance using the Nielsen et al. (2017) Basin%Ro kinetic model. Note: these grids represent the modeled thermal maturity of the source interval horizon and may extend beyond the lithostratigraphic extent of the inferred source rock; they cover the entire petroleum systems model area of interest. This is a child item of a larger data release titled "Data release for the 3D petroleum systems model of the Williston Basin, USA".
The the Williston Basin has been a leading petroleum producer for over a half century with development beginning around the turn of the 20th century. The spatial and temporal spread of the associated wells is important from both an economic perspective but also a natural resource view. These data were gathered from the state/province oil and gas divisions for use by USGS researchers and their collaborators in water resource specific studies. Each state/province provides slightly different information for each well, with some providing more information and others less. We attempted to create a spatial cross-walk that allowed each database to be merged to one another to create a final regional spatial database. Each...
The Williston Basin, in north-central United States and south-central Canada, has been a leading source of domestic oil and gas production for more than 50 years. This region, which includes parts of Montana, North Dakota, South Dakota, Saskatchewan, and Manitoba, is currently in the midst of a modern energy boom driven by advances in oil and gas production technologies. The main energy-producing formations associated with the current boom are the Bakken and Three Forks. A portion of the Williston Basin is overlain by the Prairie Pothole Region (PPR), which is known for its depressional wetlands that provide critical breeding and nesting habitats for a majority of North America’s migratory waterfowl as well as habitat...
thumbnail
The input form provides a record of the complete input values required for the quantitative assessment of water and proppant associated with oil and gas production for the continuous oil and gas resource in a geologically defined Assessment Unit, and the same form template is used for all such assessments. Each USGS water and proppant assessment builds from a USGS petroleum assessment that provides the geologic foundation for the water and proppant assessment. Assessment units are defined in the course of conducting the petroleum assessment.
thumbnail
Shallow subsurface electrical conductivity was mapped at Rabenberg National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 32 line-kilometers (km) of data were acquired over an area of approximately 1 square-kilometer. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey...
thumbnail
Shallow subsurface electrical conductivity was mapped at Anderson National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 25 line-kilometers (km) of data were acquired over an area of approximately 1 square-kilometer. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey path;...
thumbnail
Shallow subsurface electrical conductivity was mapped at Medwell National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 9 line-kilometers (km) of data were acquired over an area of approximately 1 square-kilometer. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey path;...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the Lower Hell Creek aquifer in the Williston structural basin. The data are presented as ASCII text files that can be converted to continuous raster format.


map background search result map search result map Sheridan County Vulnerability Assessment Surface Water Samples (2011) Petroleum related wells in Montana, North Dakota, South Dakota, Saskatchewan, and Manitoba Wetland characteristics from the Prairie Pothole Region of the Williston Basin (2014-2016) Input forms for 2016 water and proppant assessment of the Bakken and Three Forks Formations, Williston Basin, USA Anderson NWR, Montana, 2017 Rabenberg NWR, Montana, 2017 Norman Lake NWR, North Dakota, 2018 Medwell NWR, Montana, 2017 Lake water-quality data for select constituents in Williston Basin, Montana, North Dakota, and South Dakota for water years 1970-2014 Interpretations from resistivity and lithologic logs in selected wells in the Williston basin Calibrated basal heat flow grids for the 3D petroleum systems model of the Williston Basin, USA PetroMod model files for the 3D petroleum systems model of the Williston Basin, USA Model layer facies grids for the 3D petroleum systems model of the Williston Basin, USA Calibrated thermal maturity grids for the 3D petroleum systems model of the Williston Basin, USA Medwell NWR, Montana, 2017 Rabenberg NWR, Montana, 2017 Anderson NWR, Montana, 2017 Norman Lake NWR, North Dakota, 2018 Sheridan County Vulnerability Assessment Surface Water Samples (2011) Wetland characteristics from the Prairie Pothole Region of the Williston Basin (2014-2016) Lake water-quality data for select constituents in Williston Basin, Montana, North Dakota, and South Dakota for water years 1970-2014 Calibrated basal heat flow grids for the 3D petroleum systems model of the Williston Basin, USA PetroMod model files for the 3D petroleum systems model of the Williston Basin, USA Model layer facies grids for the 3D petroleum systems model of the Williston Basin, USA Calibrated thermal maturity grids for the 3D petroleum systems model of the Williston Basin, USA Interpretations from resistivity and lithologic logs in selected wells in the Williston basin Input forms for 2016 water and proppant assessment of the Bakken and Three Forks Formations, Williston Basin, USA Petroleum related wells in Montana, North Dakota, South Dakota, Saskatchewan, and Manitoba