Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: yale (X)

297 results (8ms)   

View Results as: JSON ATOM CSV
thumbnail
Winter (January – March) precipitation (mm) averaged over 2046-2065 from the general circulation model Hadley CM3 (Gordon et al. 2000, Pope et al. 2000) downscaled to a grid cell size of 10 km x 10km. References: Gordon C., C. Cooper , C.A. Senior, H. Banks, J.M. Gregory, T.C. Johns , J.F.B. Mitchell, and R.A. Wood. 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168. Pope, V.D., M.L. Gallani, P.R. Rowntree, and R.A. Stratton. 2000. The impact of new physical parameterisations in the Hadley Centre climate model – HadAM3. Clim Dyn 16:123–146.
thumbnail
Future (2046-2065) predicted probability of fisher year-round occurrence projected under the A1fi emissions scenario with the Hadley CM3 GCM model (Gordon et al. 2000, Pope et al. 2000). Projected fisher distribution was created with Maxent (Phillips et al. 2006) using fisher detections (N = 102, spanning 1993 – 2011) and seven predictor variables: mean winter (January – March) precipitation, mean summer (July – September) precipitation, mean summer temperature amplitude, mean daily low temperature for the month of the year with the warmest mean daily low temperature, mean fraction of vegetation carbon burned, mean vegetation carbon (g C m2), and modal vegetation class. Predictor variables had a grid cell size of...
thumbnail
Description: Predicted probability of fisher year-round occurrence created with Maxent (Phillips et al. 2006) using fisher detections (N = 102, spanning 1993 – 2011) and seven predictor variables: mean winter (January – March) precipitation, mean summer (July – September) precipitation, mean summer temperature amplitude, mean daily low temperature for the month of the year with the warmest mean daily low temperature, mean fraction of vegetation carbon burned, mean vegetation carbon (g C m2), and modal vegetation class. Predictor variables had a grid cell size of 10 km, vegetation variables were simulated with MC1 (Hayhoe et al. 2004) and climate variables were provided by the PRISM GROUP (Daly et al. 1994). This...
thumbnail
Winter (January – March) precipitation averaged over 2046-2065 from the general circulation model PCM1 (Washington et al. 2000; Meehl et al. 2003) under the A2 emission scenario with a grid cell size of 10 km x 10km. References: Meehl, G.A., W.M. Washington, T.M.L. Wigley, J.M. Arblaster, and A. Dai. 2003. Solar and greenhouse gas forcing and climate response in the twentieth century. J Climate 16:426–444. Washington, W.M., J.W. Weatherly, G.A. Meehl, A.J. Semtner, T.W. Bettge, A.P. Craig, W.G. Stran, J. Arblaster, V.B. Wayland, R. James , and Y. Zhang. 2000. Parallel climate model (PCM) control and transient simulations. Clim Dyn 16: 755–774.
thumbnail
Annual precipitation (mm) averaged over 1986 – 2005, simulated by the MC1 dynamic global vegetation model (Bachelet et al. 2001) at a 4 km x 4 km spatial resolution using PRISM climate for the historical period. This effort is part of a pilot project to apply and evaluate the Yale Framework (Yale Science Panel for Integrating Climate Adaptation and Landscape Conservation Planning). Note: The MC1 model is described in data basin (http://databasin.org/climate-center/features/mc1-dynamic-global-vegetation-model).
thumbnail
Simulated average maximum tree LAI (m2/m2) averaged over 2076-2095 simulated by the MC1 dynamic global vegetation model (Bachelet et al. 2001) at a 800 m x 800 m spatial resolution using future climate projections provided through CMIP3 (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php). Future climate drivers were generated using statistical downscaling (simple delta method) of general circulation model projections, in this case Hadley CM3 (Johns et al. 2003) under the A2 emission scenario (Naki?enovi? et al. 2000). The deltas (differences for temperatures and ratios for precipitation) were used to modify PRISM 800 m historical baseline (Daly et al. 2008). Note: The MC1 model is described in data basin (http://databasin.org/climate-center/features/mc1-dynamic-global-vegetation-...
thumbnail
Modal vegetation class over 1986 – 2005, simulated with MC1 (Lenihan et al. 2008) and a 10 km x 10 km grid cell size. Grid Value: Vegetation Type 1: ALPINE 2: SUBALPINE FOREST 3: COAST EVERGREEN FOREST 11: PINYON-JUNIPER 4: SIERRAN EVERGREEN FOREST 6: MIXED EVERGREEN FOREST 15: GREAT BASIN EVERGREEN WOODLAND 10: MIXED EVERGREEN WOODLAND 20: SAGEBRUSH STEPPE 17: C3 GRASSLAND 18: C4 GRASSLAND 19: CHAPARRAL 17: C3 GRASSLAND 18: C4 GRASSLAND 21: DESERT
thumbnail
Agreement in predicted marten year-round distribution derived from future (2046-2065) climate projections and vegetation simulations using 3 GCMs (Hadley CM3 (Johns et al. 2003), MIROC (Hasumi and Emori 2004), and CSIRO Mk3 (Gordon 2002)) under the A2 emissions scenario (Naki?enovi? et al. 2000). Projected marten distribution was created with Maxent (Phillips et al. 2006) using marten detections (N = 302, spanning 1990 – 2011) and eight predictor variables: mean potential evapotranspiration, mean annual precipitation, mean fraction of vegetation carbon burned, mean forest carbon (g C m2), mean fraction of vegetation carbon in forest, understory index (fraction of grass vegetation carbon in forest), average maximum...
thumbnail
Predicted probability of marten year-round occurrence derived from future (2076-2095) climate projections and vegetation simulations. Projected marten distribution was created with Maxent (Phillips et al. 2006) using marten detections (N = 102, spanning 1993 – 2011) and eight predictor variables: mean potential evapotranspiration, mean annual precipitation, mean fraction of vegetation carbon burned, mean forest carbon (g C m2), mean fraction of vegetation carbon in forest, understory index (fraction of grass vegetation carbon in forest), average maximum tree LAI, and modal vegetation class. Future climate drivers were generated using statistical downscaling (simple delta method) of general circulation model projections,...
thumbnail
Future winter (January – March) precipitation (mm; averaged over 2046-2065) at a 4 km x 4 km spatial resolution using future climate projections provided through CMIP3 (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php). Future climate drivers were generated using statistical downscaling (simple delta method) of general circulation model projections, in this case MIROC 3.2 medres (Hasumi and Emori 2004) under the A2 emission scenario (Naki?enovi? et al. 2000). The deltas (differences for temperatures and ratios for precipitation) were used to modify PRISM 4km historical baseline (Daly et al. 1994). Note: The MC1 model is described in data basin (http://databasin.org/climate-center/features/mc1-dynamic-global-vegetation-model)....
thumbnail
Simulated fraction of vegetation carbon in forest averaged over 2076-2095 simulated by the MC1 dynamic global vegetation model (Bachelet et al. 2001) at a 800 m x 800 m spatial resolution using future climate projections provided through CMIP3 (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php). Future climate drivers were generated using statistical downscaling (simple delta method) of general circulation model projections, in this case Hadley CM3 (Johns et al. 2003) under the A2 emission scenario (Naki?enovi? et al. 2000). The deltas (differences for temperatures and ratios for precipitation) were used to modify PRISM 800 m historical baseline (Daly et al. 2008). Note: The MC1 model is described in data basin...
thumbnail
Simulated fraction of vegetation carbon in forest averaged over 2046-2065 simulated by the MC1 dynamic global vegetation model (Bachelet et al. 2001) at a 800 m x 800 m spatial resolution using future climate projections provided through CMIP3 (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php). Future climate drivers were generated using statistical downscaling (simple delta method) of general circulation model projections, in this case CSIRO Mk3 A2 (Gordon 2002) under the A2 emission scenario (Naki?enovi? et al. 2000). The deltas (differences for temperatures and ratios for precipitation) were used to modify PRISM 800 m historical baseline (Daly et al. 2008). Note: The MC1 model is described in data basin (http://databasin.org/climate-center/features/mc1-dynamic-global-vegetati...
thumbnail
Simulated annual precipitation (mm) averaged over 2076-2095 simulated by the MC1 dynamic global vegetation model (Bachelet et al. 2001) at a 800 m x 800 m spatial resolution using future climate projections provided through CMIP3 (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php). Future climate drivers were generated using statistical downscaling (simple delta method) of general circulation model projections, in this case MIROC 3.2 medres (Hasumi and Emori 2004) under the A2 emission scenario (Naki?enovi? et al. 2000). The deltas (differences for temperatures and ratios for precipitation) were used to modify PRISM 800 m historical baseline (Daly et al. 2008). Note: The MC1 model is described in data basin (http://databasin.org/climate-center/features/mc1-dynamic-global-vegetati...
This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP program is administered by USDA FSA and has been established to support two main FSA strategic goals centered on agricultural production. These are, increase stewardship of America's natural resources while enhancing the environment, and to ensure commodities are procured and distributed effectively and efficiently to increase food security. The NAIP program supports these goals by acquiring and providing ortho imagery that has been collected during the agricultural growing season in the U.S. The NAIP ortho imagery is tailored to meet FSA requirements and is a fundamental tool used to support FSA farm and conservation programs....
This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP program is administered by USDA FSA and has been established to support two main FSA strategic goals centered on agricultural production. These are, increase stewardship of America's natural resources while enhancing the environment, and to ensure commodities are procured and distributed effectively and efficiently to increase food security. The NAIP program supports these goals by acquiring and providing ortho imagery that has been collected during the agricultural growing season in the U.S. The NAIP ortho imagery is tailored to meet FSA requirements and is a fundamental tool used to support FSA farm and conservation programs....
thumbnail
Future summer (July – September) precipitation (mm, averaged over 2046-2065) simulated by the MC1 dynamic global vegetation model (Bachelet et al. 2001) at a 4 km x 4 km spatial resolution using future climate projections provided through CMIP3 (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php). Future climate drivers were generated using statistical downscaling (simple delta method) of general circulation model projections, in this case Hadley CM3 (Johns et al. 2003) under the A2 emission scenario (Naki?enovi? et al. 2000). The deltas (differences for temperatures and ratios for precipitation) were used to modify PRISM 4km historical baseline (Daly et al. 1994). Note: The MC1 model is described in data basin (http://databasin.org/climate-center/features/mc1-dynamic-global-veget...
thumbnail
Minimum temperature (°C) averaged over 1986 – 2005, with a grid cell size of 10 km x 10km, provided by the PRISM group (Daly et al. 1994).
thumbnail
Summer (July – September) precipitation (mm) averaged over 1986 – 2005, with a grid cell size of 10 km x 10km, provided by the PRISM group (Daly et al. 1994).
thumbnail
Simulated understory index (fraction of grass vegetation carbon in forest, ((aglivcx + bglivcx) / frstc)) averaged over 2046-2065 simulated by MC1 (Lenihan et al. 2008) at a 10 km x 10 km grid cell size under general circulation model PCM1 (Washington et al. 2000; Meehl et al. 2003) under the A2 emission scenario. References: Meehl, G.A., W.M. Washington, T.M.L. Wigley, J.M. Arblaster, and A. Dai. 2003. Solar and greenhouse gas forcing and climate response in the twentieth century. J Climate 16:426–444. Washington, W.M., J.W. Weatherly, G.A. Meehl, A.J. Semtner, T.W. Bettge, A.P. Craig, W.G. Stran, J. Arblaster, V.B. Wayland, R. James , and Y. Zhang. 2000. Parallel climate model (PCM) control and transient simulations....


map background search result map search result map Overlay of projected marten distributions, 2046-2065, 800 m resolution Predicted probability of marten year-round occurrence, 2076-2095, Hadley CM3 A2, 800 m resolution Simulated average maximum tree LAI (m2/m2), 2076-2095, Hadley CM3 A2, 800m resolution Simulated annual precipitation, 2076-2095, MIROC A2, 800m resolution Simulated fraction of vegetation carbon in forest, 2076-2095, Hadley CM3 A2, 800m resolution Simulated fraction of vegetation carbon in forest, 2046-2065, CSIRO Mk3 A2, 800m resolution Mean winter (January – March) precipitation, 2046-2065, MIROC A2, 4 km resolution Mean summer (July – September) precipitation, 2046-2065, Hadley CM3 A2, 4 km resolution Mean annual precipitation, 1986 – 2005, 4 km resolution Mean winter (January – March) precipitation, 2046-2065, PCM1 A2, 10 km resolution Mean winter (January – March) precipitation, 2046-2065, Hadley CM3 A1fi, 10 km resolution Mean minimum temperature, 1986 – 2005, 10 km resolution Mean summer (July – September) precipitation, 1986 – 2005, 10 km resolution Simulated vegetation class (mode), 1986-2005, Hadley CM3 A1fi, 10 km resolution Simulated understory index (fraction of grass vegetation carbon in forest, ((aglivcx + bglivcx) / frstc)), 2046-2065, PCM1 A2, 10 km Predicted probability of fisher year-round occurrence, 2046-2065, Hadley CM3 A1fi, 10 km resolution Predicted probability of fisher year-round occurrence, 1986-2005, Hadley CM3 A1fi, 10 km resolution FSA 10:1 NAIP Imagery m_4109414_sw_15_1_20150825_20151103 3.75 x 3.75 minute JPEG2000 from The National Map FSA 10:1 NAIP Imagery m_3609659_nw_14_1_20150623_20150817 3.75 x 3.75 minute JPEG2000 from The National Map USGS 1:24000-scale Quadrangle for Yale, AR 1973 FSA 10:1 NAIP Imagery m_3609659_nw_14_1_20150623_20150817 3.75 x 3.75 minute JPEG2000 from The National Map USGS 1:24000-scale Quadrangle for Yale, AR 1973 Overlay of projected marten distributions, 2046-2065, 800 m resolution Predicted probability of marten year-round occurrence, 2076-2095, Hadley CM3 A2, 800 m resolution Simulated average maximum tree LAI (m2/m2), 2076-2095, Hadley CM3 A2, 800m resolution Simulated annual precipitation, 2076-2095, MIROC A2, 800m resolution Simulated fraction of vegetation carbon in forest, 2076-2095, Hadley CM3 A2, 800m resolution Simulated fraction of vegetation carbon in forest, 2046-2065, CSIRO Mk3 A2, 800m resolution Mean winter (January – March) precipitation, 2046-2065, MIROC A2, 4 km resolution Mean summer (July – September) precipitation, 2046-2065, Hadley CM3 A2, 4 km resolution Mean annual precipitation, 1986 – 2005, 4 km resolution Mean winter (January – March) precipitation, 2046-2065, PCM1 A2, 10 km resolution Mean winter (January – March) precipitation, 2046-2065, Hadley CM3 A1fi, 10 km resolution Mean minimum temperature, 1986 – 2005, 10 km resolution Mean summer (July – September) precipitation, 1986 – 2005, 10 km resolution Simulated vegetation class (mode), 1986-2005, Hadley CM3 A1fi, 10 km resolution Simulated understory index (fraction of grass vegetation carbon in forest, ((aglivcx + bglivcx) / frstc)), 2046-2065, PCM1 A2, 10 km Predicted probability of fisher year-round occurrence, 2046-2065, Hadley CM3 A1fi, 10 km resolution Predicted probability of fisher year-round occurrence, 1986-2005, Hadley CM3 A1fi, 10 km resolution