Skip to main content
Advanced Search

Filters: Categories: NOT Data (X) > Tags: {"type":"CMS Status"} (X)

330 results (685ms)   

View Results as: JSON ATOM CSV
thumbnail
Shale gas is a key source of onshore domestic energy for the United States and production of this resource is increasing rapidly. Development and extraction of shale gas requires hydraulic fracturing, which entails horizontal drilling, perforation of steel casing and cement grout using explosive charges, and expansion of fractures using fluids under high pressure. Concern over potential environmental effects of shale gas development is growing and based on a recent review there is very little information in the scientific literature on potential environmental effects of hydraulic fracturing. We propose to conduct the first broad scale, data-based assessment of the potential effects of hydraulic fracturing on water...
thumbnail
Clouds often come in contact with vegetation (often named fogs) within a certain elevation range on Hawaiʻi’s mountains. Propelled by strong winds, cloud droplets are driven onto the stems and leaves of plants where they are deposited. Some of the water that accumulates on the plants in this way drips to the ground, adding additional water over and above the water supplied by rainfall. Prior observations show that the amount of cloud water intercepted by vegetation is substantial, but also quite variable from place to place. It is, therefore, important to create a map for the complex spatial patterns of cloud water interception (CWI) in Hawaiʻi. In this project, we proposed to create the CWI map at 0.8-km resolution...
thumbnail
As the predicted impacts of climate change are becoming more apparent, natural resource managers are faced with the task of developing climate adaptation plans. These managers need state-of-the-art, scientifically based information upon which to base these management plans and decisions consistently across California and the Great Basin. This project applies historical, current, and projected climate data to a regional water model to examine water availability, biodiversity, and conservation. Analysis of this climate and hydrology data is expected to help managers understand areas in the region and landscape where the effects of climate change are expected to be the most profound. The study also addresses how the...
thumbnail
Estimates of water flows in streams are critical to inform natural resource managers of water availability for both human and ecological needs. Monitoring flow in the stream using a streamgage provides information about the amount and timing of surface water resources. However, not every stream has a streamgage and decisions about water resources may need to be made in a watershed where there is no flow information. Hydrologic models can be used to provide estimates of streamflow in the absence of streamflow information. These models depend upon available streamflow data for calibration, and can be very inaccurate without the use of those data. This research developed a method to group watersheds that are gaged...
thumbnail
Understanding the changes in the distribution and quantity of, and demand for, water resources in response to a changing climate is essential to planning for, and adapting to, future climatic conditions. In order to plan for future conditions and challenges, it is crucial that managers understand the limitations and uncertainties associated with the characterization of these changes when making management decisions. Changes in consumptive water use (water removed without return to a water resources system) will change streamflow, impacting downstream water users, their livelihoods, as well as aquatic ecosystems. Historical changes in available water may be attributed to changes in precipitation; but these changes...
thumbnail
Water is a key ecosystem service that provides life to vegetation, animals, and human communities. The distribution and flow of water on a landscape influences many ecological functions, such as the distribution and health of vegetation and soil development and function. However, the future of many important water resources remains uncertain. Reduced snowfall and snowpack, earlier spring runoff, increased winter streamflow and flooding, and decreased summer streamflow have all been identified as potential impacts to water resources due to climate change. These factors all influence the water balance in the Pacific Coastal Temperate Rainforest (PCTR). Ensuring healthy flow and availability of water resources is...
thumbnail
The Rio Grande River is a critical source of freshwater for 13 million people in Colorado, Texas, New Mexico, and Mexico. More than half of the Rio Grande’s streamflow originates as snowmelt in Colorado’s mountains, meaning that changes in the amount of snowmelt can impact the water supply for communities along the entire river. Snowmelt runoff is therefore an important component of water supply outlooks for the region, which are used by a variety of stakeholders to anticipate water availability in the springtime. It is critical that these water supply outlooks be as accurate as possible. Errors can cost states millions of dollars due to mis-allocation of water and lost agricultural productivity. There is a perception...
thumbnail
The Colorado and Rio Grande Rivers provide drinking water to millions of people in the Southwest and South Central U.S. Snowmelt accounts for 70% of streamflow in these rivers, meaning that water use downstream is directly impacted by snow accumulation and snowmelt patterns in the mountains. Mountain forests are a critical part of the hydrologic cycle that feeds these rivers, providing water supply and storage. However wildfire, which is becoming more common as temperatures rise, can disrupt the role of mountain forests in the hydrologic cycle. Uncertainty about the interactions between wildfire and snow-water, and how these interactions may change as climate conditions shift, impedes effective water resource planning...
thumbnail
During the severe drought of 2010-2015, several communities in southeast Oklahoma almost ran out of water. Some of these communities rely on streams and rivers as their sole source of water and when these sources almost ran dry, it left them searching for alternatives and wondering how to continue growing, economically, with this water uncertainty. The possibility of climate change has these communities further concerned, primarily because they do not know what to expect. Previously, the USGS, both Chickasaw and Choctaw Nations collaborated on a project to apply a range of possible climate change scenarios to the Red River watershed to determine future water availability. This study will focus specifically on southeast...
thumbnail
The Red River Basin is a vital source of water in the South Central U.S., supporting ecosystems, drinking water, agriculture, tourism and recreation, and cultural ceremonies. Stretching from the High Plains of New Mexico eastward to the Mississippi River, the Red River Basin encompasses parts of five states – New Mexico, Texas, Oklahoma, Arkansas, and Louisiana. Further, 74% of the jurisdictional boundaries of the Chickasaw and Choctaw Tribes are located within the basin. Water resources in the basin have been stressed in recent years due to a multi-year drought and increasing demands for consumptive use by metropolitan areas in Oklahoma and Texas. Unfortunately, currently available projections of future precipitation...
thumbnail
On its southbound course from Colorado to the Gulf of Mexico, the Rio Grande provides water resources for more than 13 million people. The quantity of water flowing into the northern section of the river depends on how much snowpack from the Rocky Mountains melts into runoff and on seasonal precipitation rates. Models describing the relationship between winter snowpack quantity and springtime snowmelt runoff quantities for the basin are combined with models describing long-term natural variation in precipitation to create water supply outlooks. The outlooks developed by the U.S. Natural Resources Conservation Service are currently used by stakeholders to make critical water allocation decisions in the basin. Improvements...
thumbnail
Understanding how to manage scarce water during drought is one of the great challenges we face as a society, particularly for communities in the Rio Grande Basin. Severe drought coupled with human development have profoundly impacted the quantity and quality of water in the basin. Running through Colorado, New Mexico, Texas, and Mexico, the Rio Grande is a multi-national resource that is managed by many different state, federal, and local authorities and used by diverse stakeholders. Developing the basin-wide responses necessary for drought resilience throughout the Basin can be challenging in such a complex management context. This project seeks to understand how different human and environmental factors affect...
thumbnail
In previous climate trainings conducted for tribes and pueblos in Oklahoma and New Mexico, impacts to water resources have emerged as a priority concern. Building on the success of past South Central CSC trainings such as Climate 101, this project will provide opportunities for water managers from 20 tribes to exchange knowledge in a series of workshops. These workshops, some virtual and some face-to-face, will allow water management professionals to discuss emerging issues with climate scientists, cultivate a community of practice, and increase their capacity for successful climate adaptation. Through the workshops, water resource professionals will collaborate to understand the latest developments in climate...
thumbnail
Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in global change impact studies across the Southeast. To accomplish this goal, we completed a thorough synthesis and evaluation of hydrologic modeling efforts in the Southeast region (including all states of the Southeastern Association of Fish and Wildlife Agencies (SEAFWA) including Alabama, Arkansas, Florida, Georgia, Kentucky,...
thumbnail
North American freshwater mussels are in serious decline as a result of pollution and habitat destruction from human activities. In addition, many mussel species are living in habitats that push the upper limits of their heat tolerance, which may become problematic as the climate and, as a result, water temperatures warm. As part of this project, we created a set of models to predict how freshwater mussels would respond to climate change effects. Our primary objective was to help federal and state natural resource managers forecast how mussel species will respond to climate change over the next 30 to 50 years, so that managers can develop appropriate adaptation strategies to address these changes. Additionally,...
thumbnail
The South Central U.S. is home to diverse climates and ecosystems, strong agricultural and energy sectors, and fast-growing urban areas. All share a critical need for water, which is becoming an increasingly scarce resource across the region as aquifers are overdrawn and populations grow. Understanding what brings rain to this region, and how the timing and amount of precipitation may be affected by climate change, is essential for effective water planning and management, yet community planners and managers have indicated that currently available precipitation forecasts for the South Central are insufficient, due largely to the high levels of uncertainty associated with precipitation projections for the region....
thumbnail
Resource managers must balance the impacts of competing management decisions on multiple, interacting natural systems. Hydrologic and ecological processes, such as groundwater fluctuations and riparian evapotranspiration, can be tightly coupled. Ideally, managers would have tools and models that include all processes to better understand how each management action would propagate through the environment. Because resources are limited, management tools that include only the most important processes may be more realistic. However, in some cases, omitting some interactions can lead to significant errors in predictions of hydrologic outcomes and ecological function, severely limiting a manager’s ability to identify...
thumbnail
The purpose of the project was to conduct an extensive search for completed and ongoing research that deals with climate change and agriculture in the context of water quality, for the Eastern Tallgrass Prairie and Big Rivers Landscape Conservation Cooperative (LCC) and the Upper Midwest and Great Lakes LCC. The search to acquire this information was two-fold. One portion of the search dealt with an online literature search for published peer-reviewed articles for the period of approximately 2000 to present. The second portion of the search dealt with contacting US Geological Survey (USGS) Water Science Centers and state institutions to request information on current research projects dealing with this topic that...
thumbnail
In many places around the world, spring events, like warming temperatures, are coming earlier and fall events are coming later than they have in the past. These changes have implications for the phenology, or the timing of natural life events (e.g. the timing of plant flowering in Spring or leaves falling in Autumn), of many plant species. However, not all species and regions are changing at the same rate, which can lead to mismatches (e.g. between the emergence of plants and pollinators in early spring). Many interactions in nature depend on timing and, as such, phenology affects nearly all aspects of the environment, including the abundance, distribution, and diversity of organisms, ecosystem services, food webs,...
thumbnail
Water management in the middle portion of the Rio Grande Basin (between Elephant Butte Reservoir in New Mexico and Presidio, Texas) is challenging because water demand has continued to increase over time despite limited river water and dropping groundwater levels. While urban and agricultural users can cope with frequent droughts by using a combination of river water and pumping groundwater, little to no water reaches living river ecosystems in this region. Improving this situation requires a good understanding of river water and groundwater availability, now and in the future, as well as advantages and disadvantages of water management options to sustain these ecosystems. In particular, there is a need to determine...


map background search result map search result map Modeling the Response of Freshwater Mussels to Changes in Water Temperature, Habitat, and Streamflow Using Climate and Water Models to Examine Future Water Availability and Biodiversity in California and the Great Basin Evaluating the Use of Models for Projecting Future Water Flow in the Southeast Science to Examine the Interactions Between Climate, Agriculture, and Water Quality Projecting the Future Distribution and Flow of Water in Alaskan Coastal Forest Watersheds Assessing the Drivers of Water Availability for Historic and Future Conditions in the South Central U.S. Impacts of Climate Change on Water Flows in the Red River Basin Quantifying Future Precipitation in the South Central U.S. for Water Resources Planning Assessing the Impacts of Restoration Efforts on Water and Natural Systems in a Changing World Cloud Water Interception in Hawaiʻi - Part 2: Mapping Current and Future Exchange of Water Between Clouds and Vegetation in Hawaiʻi's Mountains Informing the Management and Coordination of Water Resources in the Rio Grande Basin Estimating Future Water Availability and Streamflow in the Southeast Developing Tools for Improved Water Supply Forecasting in the Rio Grande Headwaters Improving Predictions of Water Supply in the Rio Grande under Changing Climate Conditions Understanding Changes to the Timing of Natural Events (Phenology) for Plants in the Water-Limited Southwest Evaluation of Sustainable Water Availability in Drought Prone Watersheds in Southeastern Oklahoma The Effects of Wildfire on Snow Water Resources under Multiple Climate Conditions Cultivating a Climate Science Learning Community Amongst Tribal Water Managers Understanding New Paradigms for “Environmental Flows” and Water Allocation in the Middle Rio Grande River Basin in a Changing Climate The Effects of Wildfire on Snow Water Resources under Multiple Climate Conditions Developing Tools for Improved Water Supply Forecasting in the Rio Grande Headwaters Assessing the Impacts of Restoration Efforts on Water and Natural Systems in a Changing World Improving Predictions of Water Supply in the Rio Grande under Changing Climate Conditions Cloud Water Interception in Hawaiʻi - Part 2: Mapping Current and Future Exchange of Water Between Clouds and Vegetation in Hawaiʻi's Mountains Understanding New Paradigms for “Environmental Flows” and Water Allocation in the Middle Rio Grande River Basin in a Changing Climate Impacts of Climate Change on Water Flows in the Red River Basin Evaluation of Sustainable Water Availability in Drought Prone Watersheds in Southeastern Oklahoma Cultivating a Climate Science Learning Community Amongst Tribal Water Managers Projecting the Future Distribution and Flow of Water in Alaskan Coastal Forest Watersheds Estimating Future Water Availability and Streamflow in the Southeast Using Climate and Water Models to Examine Future Water Availability and Biodiversity in California and the Great Basin Informing the Management and Coordination of Water Resources in the Rio Grande Basin Understanding Changes to the Timing of Natural Events (Phenology) for Plants in the Water-Limited Southwest Quantifying Future Precipitation in the South Central U.S. for Water Resources Planning Assessing the Drivers of Water Availability for Historic and Future Conditions in the South Central U.S. Science to Examine the Interactions Between Climate, Agriculture, and Water Quality Evaluating the Use of Models for Projecting Future Water Flow in the Southeast Modeling the Response of Freshwater Mussels to Changes in Water Temperature, Habitat, and Streamflow