Skip to main content

Organization

Upper Midwest Water Science Center

Upper Midwest Water Science Center
Wisconsin Water Science Center
https://www.usgs.gov/centers/umid-water

Location
8551 Research Way, Suite 120
Middleton , WI 53562-3586
USA
Parent Organization: Office of the Midcontinent Regional Director
thumbnail
Description of Work U.S. Geological Survey (USGS) is identifying the types and locations of emerging and legacy toxic contaminants in the water and sediments at 59 major tributaries to the Great Lakes (including many Area of Concern sites). This information is needed to help prioritize watersheds for restoration, develop strategies to reduce contaminants, and measure the success of those efforts in meeting restoration goals. The USGS contaminant and virus tributary monitoring network follows the National Monitoring Network for Coastal Waters design. The monitoring effort includes collecting emerging contaminant samples at 17 sites, a subset of the 30 nutrient monitoring sites; and for human viruses and other waterborne...
thumbnail
This dataset is part of the U.S. Geological Survey (USGS) Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) initiative. These data represent the flowline network in the Green Bay Restoration Assessment (GBRA). It is attributed with the number of disconnections (e.g., road crossings) between the reach and Lake Ontario. The more road crossings on a flowline the more disconnected that area is from the lake and the less suitable it will be for restoration. These data help identify the condition of hydrologic separation between potential restoration areas and Lake Ontario. Low numbers represent fewer disconnections, such as culverts, between the reach and the water body requiring no flow network modification...
thumbnail
Groundwater age distributions and susceptibility to natural and anthropogenic contaminants were assessed for selected wells, streambed piezometers, and springs in southeastern Minnesota. The data provide information to understand how long it will take to observe groundwater quality improvements from best management practices implemented at land surface to reduce losses of nitrate (and other chemicals) from agricultural practices. Nineteen water samples were collected from ten wells, three streambed piezometers, and four springs between August 2020 and September 2022. Two of these samples are field replicate samples collected from a spring site and a well site. A child item contains historical data from 15 water...
thumbnail
This data release contains three groundwater-flow models of northeastern Wisconsin, USA, that were developed with differing levels of complexity to provide a framework for subsequent evaluations of the effects of process-based model complexity on estimates of groundwater age distributions for withdrawal wells and streams. Preliminary assessments, which focused on the effects of model complexity on simulated water levels in the glacial aquifer system, illustrate that simulation of vertical gradients using multiple model layers improves simulated heads more in relatively low-permeability units than in high-permeability units. Moreover, simulation of heterogeneous hydraulic conductivity fields in both coarse-grained...
thumbnail
A new groundwater flow model for western Chippewa County, Wisconsin has been developed by the Wisconsin Geological and Natural History Survey (WGNHS) and the U.S. Geological Survey (USGS). An analytic element GFLOW model was constructed and calibrated to generate hydraulic boundary conditions for the perimeter of the more detailed three-dimensional MODFLOW-NWT model. This three-dimensional model uses the USGS MODFLOW-NWT finite difference code, a standalone version of MODFLOW-2005 that incorporates the Newton (NWT) solver. The model conceptualizes the hydrogeology of western Chippewa County as a six-layer system which includes several hydrostratigraphic units. The model explicitly simulates groundwater-surface-water...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.