Skip to main content

Person

Lisamarie Windham-Myers

Biologist

Email: lwindham-myers@usgs.gov
Office Phone: 650-329-4447
Fax: 650-329-4463
ORCID: 0000-0003-0281-9581
thumbnail
This dataset consists of raster geotiff outputs from modeling vertical accretion and carbon accumulation in the Nisqually River Delta, Washington, USA. These rasters represent projections of future habitat type, change in surface elevation above Mean Sea Level, and total sediment carbon accumulation since 2011 in coastal wetland habitats. Projections were generated in 20-year increments for 100 years for five amounts of sea-level rise, three amounts of suspended sediment concentrations, and two alternative configurations of the U.S. Interstate-5 causeway as it crosses the Nisqually River to either prevent or allow inland habitat migration (a total of 30 scenarios). The full methods and results are described in detail...
thumbnail
This dataset provides maps of biomass carbon (C) in gC/m2 of coastal herbaceous wetlands at a resolution of 30 m across the conterminous United States (CONUS) for 2015.
thumbnail
The goal of this study was to develop a suite of inter-related water quality monitoring approaches capable of modeling and estimating the spatial and temporal gradients of particulate and dissolved total mercury (THg) concentration, and particulate and dissolved methyl mercury (MeHg), concentration, in surface waters across the Sacramento / San Joaquin River Delta (SSJRD). This suite of monitoring approaches included: a) data collection at fixed continuous monitoring stations (CMS) outfitted with in-situ sensors, b) spatial mapping using boat-mounted flow-through sensors, and c) satellite-based remote sensing. The focus of this specific Child Page is to present all field and laboratory-based data associated with...
thumbnail
The goal of this study was to develop a suite of inter-related water quality monitoring approaches capable of modeling and estimating the spatial and temporal gradients of particulate and dissolved total mercury (THg) concentration and particulate and dissolved methyl mercury (MeHg) concentration in surface waters across the Sacramento / San Joaquin River Delta (SSJRD). This suite of monitoring approaches included: a) data collection at fixed continuous monitoring stations (CMS) outfitted with in-situ sensors, b) spatial mapping using boat-mounted, flow-through, sensors and c) satellite-based remote sensing. The focus of this specific Child Page is to present all data collected during the underway boat mapping component...
thumbnail
The Sacramento / San Joaquin River Delta (SSJRD) is contaminated with legacy mercury (Hg) from historical mining and mineral processing activities throughout the watershed, as well as from contemporary atmospheric and industrial inputs. The current project was designed for the purpose of developing high-resolution spatial and temporal models for estimating concentrations of mercury species in surface waters of the SSJRD. The field component of the project brings together three high-resolution platforms for collecting water-quality data (fixed continuous monitoring stations (CMS) outfitted with in-situ sensors, spatial mapping using boat-mounted flow-through sensors, and satellite-based remote sensing) coupled with...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.