Skip to main content

Person

Jeff T Falgout

Computer Scientist (EDGE)

Email: jfalgout@usgs.gov
Office Phone: 303-202-4261
Fax: 303-202-4229
ORCID: 0000-0002-7108-477X
thumbnail
Most methods for the assessment of sinkhole hazard susceptibility are predicated upon knowledge of pre-existing closed depressions in karst areas. In the United States (U.S.), inventories of existing karst depressions are piecemeal, and are often obtained through inconsistent methodologies applied at the state or county level and at various scales. Here, we present a first attempt at defining a karst closed depression inventory across the conterminous U.S. using a common methodology. Automated algorithms for extraction of closed depressions from 1/3 arc-second (approximately 10 m resolution) National Elevation Dataset (NED) were run on the U.S. Geological Survey (USGS) “Yeti” high-performance computing cluster....
Starting in 2022, processing switched to the Collection 2 Landsat ARD data. Landsat Burned Area Products for 2022 based on Landsat Collection 2 data are available at: Hawbaker, T.J., Vanderhoof, M.K., Schimdt, G.L., and Picotte, J.P., 2023. The Landsat Collection 2 Burned Area Products for the conterminous United States, U.S. Geological Survey Data Release, https://doi.org/10.5066/P9F26LY6 The U.S. Geological Survey (USGS) has developed and implemented an algorithm that identifies burned areas in temporally-dense time series of Landsat Analysis Ready Data (ARD) scenes to produce the Landsat Burned Area Products. The algorithm makes use of predictors derived from individual ARD Landsat scenes, lagged reference...
thumbnail
Most methods for the assessment of sinkhole hazard susceptibility are predicated upon knowledge of pre-existing closed depressions in karst areas. In the United States (U.S.), inventories of existing karst depressions are piecemeal, and are often obtained through inconsistent methodologies applied at the state or county level and at various scales. Here, we present a first attempt at defining a karst closed depression inventory across the conterminous U.S. using a common methodology. Automated algorithms for extraction of closed depressions from 1/3 arc-second (approximately 10 m resolution) National Elevation Dataset (NED) were run on the U.S. Geological Survey (USGS) “Yeti” high-performance computing cluster....
thumbnail
Glaciers are a central component to the hydrology of many areas in Alaska and the Pacific Northwest. Glacier melt plays a crucial role in the movement of nutrients through a landscape and into the ocean, and the flow of water into streams that sustain many species. As air temperatures rise, increased rates of glacier melt may have significant impacts to the hydrology and ecology in these areas. This project aims to broaden our understanding of the role of glaciers in the hydrology of Alaska and Washington state and incorporate this knowledge into two types of models that simulate past and future scenarios of water flow. The project team aims to develop a public web portal to allow users to explore content, access...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.