Skip to main content

A. Sankarasubramanian

Flood-frequency curves, critical for water infrastructure design, are typically developed based on a stationary climate assumption. However, climate changes are expected to violate this assumption. Here, we propose a new, climate-informed methodology for estimating flood-frequency curves under non-stationary future climate conditions. The methodology develops an asynchronous, semiparametric local-likelihood regression (ASLLR) model that relates moments of annual maximum flood to climate variables using the generalized linear model. We estimate the first two marginal moments (MM) – the mean and variance – of the underlying log-Pearson Type-3 distribution from the ASLLR with the monthly rainfall and temperature as...
Categories: Publication; Types: Citation
Abstract (from AGUpubs): Understanding the nexus between food, energy, and water systems (FEW) is critical for basins with intensive agricultural water use as they face significant challenges under changing climate and regional development. We investigate the food, energy, and water nexus through a regional hydroeconomic optimization (RHEO) modeling framework. The crop production in RHEO is estimated through a hierarchical regression model developed using a biophysical model, AquaCropOS, forced with daily climatic inputs. Incorporating the hierarchical model within the RHEO also reduces the computation time by enabling parallel programming within the AquaCropOS and facilitates mixed irrigation—rainfed, fully irrigated...
Categories: Publication; Types: Citation
Abstract (from AGUPubs): River scientists strive to understand how streamflow regimes vary across space and time because it is fundamental to predicting the impacts of climate change and human activities on riverine ecosystems. Here we tested whether flow periodicity differs between rivers that are regulated or unregulated by large dams, and whether dominant periodicities change over time in response to dam regulation. These questions were addressed by calculating wavelet power at different timescales, ranging from 6 hr to 10 years, across 175 pairs of dam-regulated and unregulated USGS gages with long-term discharge data, spanning the conterminous United States. We then focused on eight focal reservoirs with high-quality...
Categories: Publication; Types: Citation
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.