Skip to main content

Lois M. Voronin

thumbnail
A three-dimensional groundwater flow model was developed to simulate the effects of withdrawals on the groundwater-flow systems of five aquifers in and around Ocean County, New Jersey—the unconfined Kirkwood-Cohansey aquifer system and Vincentown aquifer, and three confined aquifers--the Rio Grande water-bearing zone, the Atlantic City 800-foot sand, and the Piney Point aquifer. A transient model was used to simulate conditions that represent no groundwater withdrawals, 2000–2003 groundwater withdrawals, and maximum-allocation groundwater withdrawals. Particle-tracking analysis, using results from two steady-state simulations, determine flow paths and travel times to near-shore wells screened in the unconfined Kirkwood-Cohansey...
thumbnail
A groundwater-flow model that was previously developed by the U. S. Geological Survey of Ocean County, N.J. (https://doi.org/10.3133/sir20165035) was used in an analysis of groundwater flow in the Kirkwood-Cohansey aquifer system and deeper confined aquifers that underlie the Barnegat Bay-Little Egg Harbor (BB-LEH) watershed and estuary. The analysis used a MODFLOW2005 simulation, in conjunction with the particle-tracking computer program MODPATH (Pollock, 1994), to delineate particle flow paths, the discharge location of each particle, and estimate the travel time along flow paths to the BB LEH estuary and streams within the BB-LEH watershed. This study conducted by the USGS, in cooperation with the Barnegat Bay...
thumbnail
A three-dimensional groundwater flow model, MODFLOW-2005 with the SWI2 module, was developed to provide a better understanding of the geohydrology of the Kirkwood-Cohansey aquifer system in the vicinity of Edwin B. Forsythe National Wildlife Refuge, New Jersey. The model was used to evaluate the potential effects of three sea-level rise scenarios on the aquifer system. The model was calibrated to average 2005-15 hydrologic conditions. The model also simulated the movement of the freshwater-seawater interface for three sea-level rise scenarios.This USGS data release contains all of the input and output files for the simulations described in the associated model documentation report (https://doi.org/10.3133/sir20175135).
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.