Skip to main content

Mike Harfoot

In 1969, researchers developed the first global circulation model (Ruttiman 2006); however, it was not until 2014 that modelers first attempted a global ecosystem and biodiversity model that included human pressures (i.e., the Madingley Model) (Harfoot et al. 2014). Other large-scale models of biodiversity exist, such as GLOBIO (Alkemade et al. 2009), but to date there are no well accepted global biodiversity models similar to global circulation models that can help guide global biodiversity policy development and targets. The lack of global biodiversity models compared to the extensive array of general circulation models provides a unique opportunity for climate, ecosystem, and biodiversity modeling experts to...
thumbnail
Modeling interactions between human and ecological systems is needed to identify pathways to meet multiple United Nations Sustainable Development Goals. Particularly important is the relationship between biodiversity, ecological processes, and ecosystem services. However, current models tend to ignore impacts of biodiversity on ecological processes. Existing models capture impacts of socio-economic activities on biodiversity or ecosystem services, but critically, links between biodiversity and ecosystem services are only weakly incorporated in most projections and hence in policy design. Knowledge of these relationships has improved, but is scattered across the literature, as are models addressing each component....
Natural ecosystems store large amounts of carbon globally, as organisms absorb carbon from the atmosphere to build large, long-lasting, or slow-decaying structures such as tree bark or root systems. An ecosystem’s carbon sequestration potential is tightly linked to its biological diversity. Yet when considering future projections, many carbon sequestration models fail to account for the role biodiversity plays in carbon storage. Here, we assess the consequences of plant biodiversity loss for carbon storage under multiple climate and land-use change scenarios. We link a macroecological model projecting changes in vascular plant richness under different scenarios with empirical data on relationships between biodiversity...
thumbnail
As our world changes and communities are faced with uncertain future climate conditions, decision making and resource planning efforts can often no longer rely on historic scientific data alone. Scientific projections of what might be expected in the future are increasingly needed across the country and around the world. Scientists and researchers can develop these projections by using computer models to simulate complex elements of our climate and their interactions with ecosystems, wildlife, and biodiversity. While an extensive array of general circulation models (GCMs, climate models of the general circulation of the atmosphere and ocean) exist, there is currently a lack of global biodiversity models. This project...
Abstract (from BioScience): Global biodiversity and ecosystem service models typically operate independently. Ecosystem service projections may therefore be overly optimistic because they do not always account for the role of biodiversity in maintaining ecological functions. We review models used in recent global model intercomparison projects and develop a novel model integration framework to more fully account for the role of biodiversity in ecosystem function, a key gap for linking biodiversity changes to ecosystem services. We propose two integration pathways. The first uses empirical data on biodiversity–ecosystem function relationships to bridge biodiversity and ecosystem function models and could currently...
Categories: Publication; Types: Citation
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.