Skip to main content

Oregon Water Science Center

thumbnail
Water-surface elevation measurements were collected in Spring, 2015 along the upper Willamette River, Oregon, between Harrisburg and Corvallis. These surveys were collected over a small range of discharges, from 6,900 cubic feet per second to 8,300 cubic feet per second, using a real-time kinematic global positioning system (RTK-GPS) on a motorboat at various cross sections along the river. These datasets were collected for equipment calibration and validation for the National Aeronautics and Space Administration’s (NASA) Surface Water and Ocean Topography (SWOT) satellite mission. This is one of multiple survey datasets that will be released for this effort.
thumbnail
Water-surface elevations were recorded by submerged pressure transducers in Spring, 2015 along the upper Willamette River, Oregon, between Eugene and Corvallis. The water-surface elevations were surveyed by using a real-time kinematic global positioning system (RTK-GPS) at each pressure sensor location. These water-surface elevations were logged over a small range of discharges, from 4,600 cubic feet per second to 10,800 cubic feet per second at Harrisburg, OR. These datasets were collected for equipment calibration and validation for the National Aeronautics and Space Administration’s (NASA) Surface Water and Ocean Topography (SWOT) satellite mission. This is one of multiple datasets that will be released for this...
thumbnail
Water surface elevations within seven Willamette River off-channel features (OCF; alcoves and side channels) were measured using submerged pressure transducers. Transducers were installed from late May through mid-October, 2016, when discharge of the Willamette River was between approximately 5,500 and 45,000 cubic feet per second at Salem, Oregon (USGS gage 14191000) and 3,500 to 17,500 cubic feet per second at Harrisburg, Oregon (USGS gage 14166000). Pressure transducer sensor depth was measured at all seven sites. For five of the sites, pressure transducer sensor depths were converted to water surface elevations by surveying the water surface at each transducer with a real-time kinematic global positioning system...
thumbnail
This data release contains estimates of mean daily gross primary production (GPP) and ecosystem respiration (ER) in Bronson and Fanno Creeks, Oregon during August of 2016. These estimates were part of a larger study of the water-quality effects of beaver dams and beaver activity in selected urban streams of the Tualatin River Basin in northwestern Oregon. The mean daily GPP and ER values were estimated using two approaches (both of which are publicly available and documented): 1) a USGS model developed using the R programming language and 2) a Washington Department of Ecology model that runs in Excel. Inputs for the models included hourly measurements of dissolved-oxygen concentration, water temperature, photosynthetically...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.