Skip to main content

Susanne Schwinning

thumbnail
We investigated the effects of winter and summer drought on a shrub/grass community of the Colorado Plateau in western North America, a winter-cold, summer-hot desert that receives both winter and summer precipitation. Summer, winter and yearlong drought treatments were imposed for 2 consecutive years using rainout shelters. We chose three perennial species for this study, representing different rooting patterns and responsiveness to precipitation pulses: Oryzopsis hymenoides, a perennial bunch grass with shallow roots; Gutierrezia sarothrae, a subshrub with dimorphic roots; and Ceratoides lanata, a predominantly deep-rooted woody shrub. Growth for all three species was far more sensitive to winter than to summer...
The amount and spatial distribution of deep drainage (downward movement of water across the bottom of the root zone) and groundwater recharge affect the quantity and quality of increasingly limited groundwater in arid and semiarid regions. We synthesize research from the fields of ecology and hydrology to address the issue of deep drainage in arid and semiarid regions. We start with a recently developed hydrological model that accurately simulates soil water potential and geochemical profiles measured in thick (.50 m), unconsolidated vadose zones. Model results indicate that, since the climate change that marked the onset of the Holocene period 10 000–15 000 years ago, there has been no deep drainage in vegetated...
In the arid and semiarid regions of North America, discrete precipitation pulses are important triggers for biological activity. The timing and magnitude of these pulses may differentially affect the activity of plants and microbes, combining to influence the C balance of desert ecosystems. Here, we evaluate how a "pulse" of water influences physiological activity in plants, soils and ecosystems, and how characteristics, such as precipitation pulse size and frequency are important controllers of biological and physical processes in arid land ecosystems. We show that pulse size regulates C balance by determining the temporal duration of activity for different components of the biota. Microbial respiration responds...
1 We introduce a hydraulic soil-plant model with water uptake from two soil layers; one a pulse-dominated shallow soil layer, the other a deeper soil layer with continuous, but generally less than saturated soil moisture. Water uptake is linked to photosynthetic carbon assimilation through a photosynthesis model for C3 plants. 2 A genetic algorithm is used to identify character suites that maximize photosynthetic carbon gain for plants that experience a particular soil moisture pattern. The character suites include allocation fraction to stem, leaves and shallow root, stem capacitance and stem water storage capacity, maximal leaf conductance and sensitivity of leaf conductance to plant water potential, and a critical...
thumbnail
In desert ecosystems a large proportion of water and nitrogen is supplied in rain-induced pulses. It has been suggested that competitive interactions among desert plants would be most intense during these pulse periods of high resource availability. We tested this hypothesis with three cold desert shrub species of the Colorado Plateau (Gutierrezia sarothrae, Atriplex confertifolia, and Chrysothamnus nauseosus), which differ in their distribution of functional roots. In a three-year field study we conducted a neighbor removal experiment in conjunction with simulated 25-mm precipitation events and the addition of a nitrogen pulse in either spring or summer. We measured predawn water potential (Ψ), gas exchange, leaf...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.