Skip to main content
Advanced Search

Filters: Contacts: Starfield, A. M. (X)

10 results (8ms)   

View Results as: JSON ATOM CSV
In the boreal biome, fire is the major disturbance agent affecting ecosystem change, and fire dynamics will likely change in response to climatic warming. We modified a spatially explicit model of Alaskan subarctic treeline dynamics (ALFRESCO) to simulate boreal vegetation dynamics in interior Alaska. The model is used to investigate the role of black spruce ecosystems in the fire regime of interior Alaska boreal forest. Model simulations revealed that vegetation shifts caused substantial changes to the fire regime. The number of fires and the total area burned increased as black spruce forest became an increasingly dominant component of the landscape. The most significant impact of adding black spruce to the model...
The response of terrestrial ecosystems to climate warming has important implications to potential feedbacks to climate. The interactions between topography, climate, and disturbance could alter recruitment patterns to reduce or offset current predicted positive feedbacks to warming at high latitudes. In northern Alaska the Brooks Range poses a complex environmental and ecological barrier to species migration. We use a spatially explicit model (ALFRESCO) to simulate the transient response of subarctic vegetation to climatic warming in the Kobuk/Noatak River Valley (200 x 400 km) in northwest Alaska. The model simulations showed that a significantly warmer (+6 degrees C) summer climate would cause expansion of forest...
Categories: Publication; Types: Citation; Tags: M1-Ecosystems
In the boreal biome, fire is the major disturbance agent affecting ecosystem change, and fire dynamics will likely change in response to climatic warming. We modified a spatially explicit model of Alaskan subarctic treeline dynamics (ALFRESCO) to simulate boreal vegetation dynamics in interior Alaska. The model is used to investigate the role of black spruce ecosystems in the fire regime of interior Alaska boreal forest. Model simulations revealed that vegetation shifts caused substantial changes to the fire regime. The number of fires and the total area burned increased as black spruce forest became an increasingly dominant component of the landscape. The most significant impact of adding black spruce to the model...
thumbnail
The response of terrestrial ecosystems to climate warming has important implications to potential feedbacks to climate. The interactions between topography, climate, and disturbance could alter recruitment patterns to reduce or offset current predicted positive feedbacks to warming at high latitudes. In northern Alaska the Brooks Range poses a complex environmental and ecological barrier to species migration. We use a spatially explicit model (ALFRESCO) to simulate the transient response of subarctic vegetation to climatic warming in the Kobuk/Noatak River Valley (200 x 400 km) in northwest Alaska. The model simulations showed that a significantly warmer (+6 degrees C) summer climate would cause expansion of forest...
In the boreal biome, fire is the major disturbance agent affecting ecosystem change, and fire dynamics will likely change in response to climatic warming. We modified a spatially explicit model of Alaskan subarctic treeline dynamics (ALFRESCO) to simulate boreal vegetation dynamics in interior Alaska. The model is used to investigate the role of black spruce ecosystems in the fire regime of interior Alaska boreal forest. Model simulations revealed that vegetation shifts caused substantial changes to the fire regime. The number of fires and the total area burned increased as black spruce forest became an increasingly dominant component of the landscape. The most significant impact of adding black spruce to the model...
An important challenge in global-change research is to simulate short-term transient changes in climate, disturbance regime, and recruitment that drive long-term vegetation distributions. Spatial features (e.g., topographic barriers) and processes, including disturbance propagation and seed dispersal, largely control these short-term transient changes. Here we present a frame-based spatially explicit model (ALFRESCO) that simulates landscape-level response of vegetation to transient changes in climate and explicitly represents the spatial processes of disturbance propagation and seed dispersal. The spatial model and the point model from which it was developed showed similar results in some cases, but diverged in...


    map background search result map search result map Modeling the influence of topographic barriers on treeline advance at the forest-tundra ecotone in northwestern Alaska Sustainability of Arctic Communities: An Interdisciplinary Collaboration of Researchers and Local Knowledge Holders Modeling the Impact of Black Spruce on the Fire Regime of Alaskan Boreal Forest Sustainability of Arctic Communities: An Interdisciplinary Collaboration of Researchers and Local Knowledge Holders Modeling the Impact of Black Spruce on the Fire Regime of Alaskan Boreal Forest Modeling the influence of topographic barriers on treeline advance at the forest-tundra ecotone in northwestern Alaska