Skip to main content
Advanced Search

Filters: partyWithName: USDA Forest Service (X)

130 results (8ms)   

View Results as: JSON ATOM CSV
thumbnail
The capacity of ecosystems to provide services such as carbon storage, clean water, and forest products is determined not only by variations in ecosystem properties across landscapes, but also by ecosystem dynamics over time. ForWarn is a system developed by the U.S. Forest Service to monitor vegetation change using satellite imagery for the continental United States. It provides near real-time change maps that are updated every eight days, and summaries of these data also provide long-term change maps from 2000 to the present. Based on the detection of change in vegetation productivity, the ForWarn system monitors the effects of disturbances such as wildfires, insects, diseases, drought, and other effects of weather,...
thumbnail
WaSSI (Water Supply Stress Index) predicts how climate, land cover, and human population change may impact water availability and carbon sequestration at the watershed level (about the size of a county) across the lower 48 United States. WaSSI users can select and adjust temperature, precipitation, land cover, and water use factors to simulate change scenarios for any timeframe from 1961 through the year 2100. Simulation results are available as downloadable maps, graphs, and data files that users can apply to their unique information and project needs. WaSSI generates useful information for natural resource planners and managers who must make informed decisions about water supplies and related ecosystem services...
thumbnail
This layer provides information on putative winter corridors facilitating dispersal from northern populations to patches capable of supporting Canada lynx in the Northern Rocky Mountains. These results combine resource selection, step selection, and least-cost path models to define movement corridors for lynx in the Northern Rocky Mountains. The illustrated corridors were created by using a one-mile buffer around the putative winter corridors facilitating dispersal from northern populations to patches capable of supporting Canada lynx in the Northern Rocky Mountains
Knowing which ecosystem services are provided and who benefits from these services will allow resource managers, scientists, industries, and the public to explore new institutional, market, and policies to encourage protection of and investments in these resources. Objectives of this project are to 1) link the environmental and economic values of the region’s natural assets in a way that establishes a common language for resource managers, scientists, industry, local government and the public to substantively engage in landscape-level conservation planning and 2) to explore different development or management strategies and examine trade-offs to support improved and informed decision-making. A first step in determining...
thumbnail
An area encompassing all the National Forest System lands within the Greater Yellowstone Ecosystem (GYE) administered by an administrative unit. The area encompasses private lands, other governmental agency lands, and may contain National Forest System lands within the proclaimed boundaries of another administrative unit. All National Forest System lands fall within one and only one Administrative Forest Area.
thumbnail
These data products are preliminary burn severity assessments derived from data obtained from suitable imagery (including Landsat TM, Landsat ETM+, Landsat OLI, Sentinel 2A, and Sentinel 2B). The pre-fire and post-fire subsets included were used to create a differenced Normalized Burn Ratio (dNBR) image. The dNBR image attempts to portray the variation of burn severity within a fire. The severity ratings are influenced by the effects to the canopy. The severity rating is based upon a composite of the severity to the understory (grass, shrub layers), midstory trees and overstory trees. Because there is often a strong correlation between canopy consumption and soil effects, this algorithm works in many cases for Burned...
The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a thematic raster image...
The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a thematic raster image...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a thematic raster image...
thumbnail
Efforts to model and predict long-term variations in climate-based on scientific understanding of climatological processes have grown rapidly in their sophistication to the point that models can be used to develop reasonable expectations of regional climate change. This is important because our ability to assess the potential consequences of a changing climate for particular ecosystems or regions depends on having realistic expectations about the kinds and severity of change to which a region may be exposed.The fifth phase of the Coupled Model Intercomparison Project (CMIP5) is a collaborative climate modeling research effort coordinated by the World Climate Research Programme (WCRP). This is the most recent phase...
thumbnail
Information about economic activity was obtained from the National Cohesive Wildland Fire Management Strategy (cohesivefire.nemac.org). Data were derived from the USDA Economic Research Service to create a county-level measure of Dominant Economic Activity (county economic dependence). This describes the most prevalent kind of economic activity, which includes activities from farming, mining, and manufacturing to government employment and the service industry. The Appalachian economy is diverse and geographically variable; for example, manufacturing is spread throughout the region, whereas mining activities are located more centrally. Data are from 2004.The mission of the USDA Economic Research Service is to inform...
thumbnail
The National Cohesive Wildland Fire Management Strategy, initiated in 2009 and finalized in 2014, provides a national vision for wildland fire management. This highly collaborative effort establishes three overarching goals, and describes stakeholder-driven processes for achieving them: (1) resilient landscapes; (2) fire-adapted communities; and (3) safe and effective wildfire response. The scientific rigor of this program was ensured with the establishment of the National Science and Analysis Team (NSAT). The main tasks of NSAT were to compile credible scientific information, data, and models to help explore national challenges and opportunities, identify a range of management options, and help set national priorities...
thumbnail
The Forest Health Technology Enterprise Team (FHTET) was created by the Deputy Chief for State and Private Forestry in February 1995 to develop and deliver forest health technology services to field personnel in public and private organizations in support of the Forest Service’s land ethic, to “promote the sustainability of ecosystems by ensuring their health, diversity, and productivity.” This dataset shows the total basal area of all tree species as square feet per acre.For more information: http://www.fs.fed.us/foresthealth/technology/nidrm2012.shtml
Among a host of other critical ecosystem functions, intact riparian forests can help to reduce vulnerability of coldwater stream habitats to warming regional temperatures. Restoring and conserving these forests can therefore be an important part of regional and landscape-scale conservation plans, but managers need science and decision-support tools to help determine when these actions will be most effective. To help fill this need, we developed the Riparian Prioritization for Climate Change Resilience (RPCCR) web-based decision support tool to quickly and easily identify, based on current riparian cover and predicted vulnerability to air temperature warming, sites that are priority candidates for riparian restoration...
thumbnail
This layer provides information on putative winter corridors facilitating dispersal from northern populations to patches capable of supporting Canada lynx in the Northern Rocky Mountains. These results combine resource selection, step selection, and least-cost path models to define movement corridors for lynx in the Northern Rocky Mountains.
thumbnail
This dataset represents freshwater streams on the Chugach National Forest, Alaska. Streams were digitized from 1:31,380 orthophoto quads. Estuarine channel types may extend beyond shoreline. Selected stream arcs on Cordova Ranger District updated October and November 2002. Presence of fish species and stream class were updated.
thumbnail
This geospatially explicit vector-based polygon dataset identifies 85 terrestrial ecological subsection delineations present in Southeast Alaska and the Tongass National Forest. Within each subsection one can expect to find a relatively consistent occurence and distribution of vegetation types. Due to the hydrologically-influenced geomorphology of Southeast Alaska specific key indicators of physiography, lithology, and surface geology were employed to systematically distinguish terrestrial ecosystems.
thumbnail
These data products are preliminary burn severity assessments derived from data obtained from suitable imagery (including Landsat TM, Landsat ETM+, Landsat OLI, Sentinel 2A, and Sentinel 2B). The pre-fire and post-fire subsets included were used to create a differenced Normalized Burn Ratio (dNBR) image. The dNBR image attempts to portray the variation of burn severity within a fire. The severity ratings are influenced by the effects to the canopy. The severity rating is based upon a composite of the severity to the understory (grass, shrub layers), midstory trees and overstory trees. Because there is often a strong correlation between canopy consumption and soil effects, this algorithm works in many cases for Burned...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a thematic raster image...


map background search result map search result map Ecological Subsections Freshwater Streams on the Chugach National Forest, Alaska Canada Lynx Connectivity Winter Corridors Canada Lynx Connectivity Winter Corridors - 1 mile buffer WASSI Future Change in Water Supply Stress Index 1991-2010 ForWarn Mean Summer National Difference Vegetation Index 2009-2013 Total Basal Area of All Tree Species 2012 U.S. Forest Service National Cohesive Fire Strategy Dataset Forest Product Production National Forest Administrative Units in the GYE Dominant Economic Activity USDA Economic Research Service CMIP5 Future Average Annual Temperature 2031-2060 Monitoring Trends in Burn Severity Thematic Burn Severity Mosaic for 2019 (ver. 5.0, August 2023) Burned Area Reflectance Classification Thematic Burn Severity Mosaic for 2021 (ver. 6.0, January 2024) Monitoring Trends in Burn Severity Thematic Burn Severity Mosaic for 2021 (ver. 5.0, August 2023) Burned Area Reflectance Classification Thematic Burn Severity Mosaic for 2023 (ver. 6.0, January 2024) Canada Lynx Connectivity Winter Corridors Canada Lynx Connectivity Winter Corridors - 1 mile buffer Freshwater Streams on the Chugach National Forest, Alaska National Forest Administrative Units in the GYE U.S. Forest Service National Cohesive Fire Strategy Dataset Forest Product Production WASSI Future Change in Water Supply Stress Index 1991-2010 Dominant Economic Activity USDA Economic Research Service CMIP5 Future Average Annual Temperature 2031-2060 ForWarn Mean Summer National Difference Vegetation Index 2009-2013 Ecological Subsections Total Basal Area of All Tree Species 2012 Monitoring Trends in Burn Severity Thematic Burn Severity Mosaic for 2019 (ver. 5.0, August 2023) Monitoring Trends in Burn Severity Thematic Burn Severity Mosaic for 2021 (ver. 5.0, August 2023) Burned Area Reflectance Classification Thematic Burn Severity Mosaic for 2023 (ver. 6.0, January 2024) Burned Area Reflectance Classification Thematic Burn Severity Mosaic for 2021 (ver. 6.0, January 2024)