Skip to main content
Advanced Search

Filters: Categories: Data (X) > partyWithName: Arctic Landscape Conservation Cooperative (X) > partyWithName: Western Alaska Landscape Conservation Cooperative (X) > Types: Map Service (X)

32 results (8ms)   

View Results as: JSON ATOM CSV
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
Webinar 1: Alaska’s National Hydrography Dataset (NHD), the digital data layer that depicts the location of lakes and streams, was originally created from the 1950’s topographic maps. With funding support from the LCC Network, this project focused on establishing a statewide framework to improve the hydrography mapping and stewardship in Alaska. This will be achieved through the creation of a statewide system to make digital mapping data updates accessible and affordable, and through the creation of a statewide hydrography mapping coordinator position to synchronize updates and guide hydrography mapping development. This framework will allow agencies and organizations to greatly improve their hydrography mapping...
thumbnail
The Integrated Ecosystem Model for Alaska project (IEM) uses down-scaled climate models as the drivers of ecosystem change to produce forecasts of future fire, vegetation, permafrost and hydrology regimes at a resolution of 1km. This effort is the first to model ecosystem change on a statewide scale, using climate change input as a major driving variable. The objectives of the IEM project are as follows; to better understand and predict effects of climate change and other stressors on landscape level physical and ecosystem processes, and to provide support for resource conservation planning.The IEM will provide resource managers with a decision support tool to visualize future landscapes in Alaska. Model outputs...
thumbnail
This strategic plan is a guiding framework that lays out the objectives and goals for Alaska Hydrology Technical Working Group and AK Hydro to accomplish high-resolution statewide hydrography updates that meet national mapping standards and local partners’ needs.The strategic plan identifies five key objec-tives: 1) Map Alaska’s Water 2) Support Alaska’s Hydrography Needs 3) provide Hydrography Services 4) establish a Sus-tainable Hydrography future and 5) allow for Data Integration. These strategic objectives will give AK Hydro and AHTWG success in meeting the mission to efficiently serve the hydrography needs of Alaska. The objectives as-sist in mapping the surface water of Alaska, meeting NHD standards, securing...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
Alaska is an expansive state with abundant water resources. The complex landscape is defined by water and ice, but Alaska lacks quality mapping of its surface water features. The Alaska Hydrography Technical Working Group and Alaska Hydrography Database have worked to establish the Alaska Hydrography Strategic Plan to promote and guide a core mission to efficiently serve the current and future hydrography needs of Alaska for the next five years. This work will update the state’s hydrography in the National Hydrography Database from its current condition to meet national 1:24,000-scale standards. This work has focused on coordination of hydrography needs with partners and land managers, planning for the future hydrography...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.


map background search result map search result map 2014 Webinar for Bringing Alaska's Hydrology into the 21st Century Bringing Alaska’s Freshwater Hydrography into the 21st Century Alaska Hydrography Strategic Plan: Mapping Alaska's Water 2017-2021 Potential Evapotranspiration: CRU Historical Dataset Integrated Ecosystem Model (AIEM) for Alaska and Northwest Canada (COPY) Historical Stand Age 1950-1959 Historical Stand Age 1920-1929 Historical Stand Age 1990-1999 Historical Stand Age 1930-1939 Historical Stand Age 1880-1889 Historical Stand Age 1860-1869 Historical Stand Age 1970-1979 Potential Evapotranspiration: CRU Historical Dataset Integrated Ecosystem Model (AIEM) for Alaska and Northwest Canada (COPY) Historical Stand Age 1950-1959 Historical Stand Age 1920-1929 Historical Stand Age 1990-1999 Historical Stand Age 1930-1939 Historical Stand Age 1880-1889 Historical Stand Age 1860-1869 Historical Stand Age 1970-1979 2014 Webinar for Bringing Alaska's Hydrology into the 21st Century Bringing Alaska’s Freshwater Hydrography into the 21st Century Alaska Hydrography Strategic Plan: Mapping Alaska's Water 2017-2021