Skip to main content
Advanced Search

Filters: Types: OGC WFS Layer (X) > partyWithName: Woods Hole Coastal and Marine Science Center (X)

369 results (15ms)   

Filters
Contacts (Less)
View Results as: JSON ATOM CSV
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
Coastal wetlands are major global carbon sinks, however, they are heterogeneous and dynamic ecosystems. To characterize spatial and temporal variability in a New England salt marsh, static chamber measurements of greenhouse gas (GHG) fluxes were compared among major plant-defined zones (high marsh dominated by Distichlis spicata and a zone of invasive Phragmites australis) during 2013 and 2014 growing seasons. Two sediment cores were collected in 2015 from the Phragmites zone to support previously reported core collections from the high marsh sites (Gonneea and others 2018). Collected cores were up to 70 cm in length with dry bulk density ranges from 0.04 to 0.33 grams per cubic centimeter and carbon content 22.4%...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
thumbnail
Two marine geological surveys were conducted in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey, University of Connecticut, and University of New Haven through the Long Island Sound Mapping and Research Collaborative. Sea-floor images and videos were collected at 210 sampling sites within the survey area, and surficial sediment samples were collected at 179 of the sites. The sediment data and the observations from the images and videos are used to identify sediment texture and sea-floor habitats.
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Atlantic Ocean, Beckman Coulter Multisizer 3, CMHRP, CSV, Coastal and Marine Hazards and Resources Program, All tags...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of eastern Long Island, New York, including the north and south forks, Gardiners Island, and Fishers Island. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State,...
thumbnail
In spring and summer 2017, the U.S. Geological Survey’s Gas Hydrates Project conducted two cruises aboard the research vessel Hugh R. Sharp to explore the geology, chemistry, ecology, physics, and oceanography of sea-floor methane seeps and water column gas plumes on the northern U.S. Atlantic margin between the Baltimore and Keller Canyons. Split-beam and multibeam echo sounders and a chirp subbottom profiler were deployed during the cruises to map water column backscatter, sea-floor bathymetry and backscatter, and subsurface stratigraphy associated with known and undiscovered sea-floor methane seeps. The first cruise, known as the Interagency Mission for Methane Research on Seafloor Seeps and designated as field...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Accomac Canyon, Applied Acoustics, Atlantic Margin, Atlantic Ocean, Baltimore Canyon, All tags...
thumbnail
During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The USGS Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion along the southeast US coastline and implications for vulnerability to future storms. Shoreline positions were compiled prior to and following Hurricane Irma along the sandy shorelines of the Gulf of Mexico and Atlantic...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Atlantic Coast, Baseline, CMGP, Coastal and Marine Geology Program, DSAS, All tags...
thumbnail
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photos or topographic surveys, as well as contemporary sources like lidar point clouds and digital elevation models (DEMs). These shorelines are compiled and analyzed in the Digital Shoreline Analysis System (DSAS) software to compute rates of change. It is useful to keep a record of historical shoreline positions as a method of monitoring change over time to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable to change. This data release and other associated products represent an expansion...
thumbnail
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photos or topographic surveys, as well as contemporary sources like lidar point clouds and digital elevation models (DEMs). These shorelines are compiled and analyzed in the Digital Shoreline Analysis System (DSAS) software to compute rates of change. It is useful to keep a record of historical shoreline positions as a method of monitoring change over time to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable to change. This data release and other associated products represent an expansion...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this problem, scientists in the U.S. Geological Survey (USGS) Coastal and Marine Geology program are developing Bayesian networks as a tool to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as the piping plover (Charadrius melodus)...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this problem, scientists in the U.S. Geological Survey (USGS) Coastal and Marine Geology program are developing Bayesian networks as a tool to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as the piping plover (Charadrius melodus)...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
Two marine geological surveys were conducted in Nantucket Sound, Massachusetts, in May 2016 and May 2017 by the U.S. Geological Survey as part of an agreement with the Massachusetts Office of Coastal Zone Management to map the geology of the sea floor offshore of Massachusetts. Samples of surficial sediment and photographs of the sea floor were collected at 76 sampling sites within the survey area, and sea-floor videos were collected at 75 of the sites. The sediment data and the observations from the photos and videos are used to explore the nature of the sea floor; in conjunction with high-resolution geophysical data, the observations are used to make interpretive maps of sedimentary environments and validate acoustic...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Atlantic Ocean, CMHRP, CZM, Coastal and Marine Hazards and Resources Program, MA CZM, All tags...
thumbnail
This data publication is a compilation of six different multibeam surveys covering the previously unmapped Queen Charlotte Fault offshore southeast Alaska and Haida Gwaii, Canada. These data were collected between 2005 and 2018 under a cooperative agreement between the U.S. Geological Survey, Natural Resources Canada, and the National Oceanic and Atmospheric Administration. The six source surveys from different multibeam sonars are combined into one terrain model with a 30-m resolution. A complementary polygon shapefile records the extent of each source survey in the output grid.
thumbnail
In March 2020, the U.S. Geological Survey and the University of Puerto Rico Mayagüez (UPRM) Department of Marine Sciences conducted a marine seismic-reflection experiment focused on observing geophysical evidence of submarine faulting and mass wasting related to the southwestern Puerto Rico seismic sequence of 2019–20. The seismic sequence culminated with a magnitude 6.4 earthquake centered beneath Guayanilla Canyon on January 7, 2020 and caused shoreline subsidence, rockfalls, and considerable damage to buildings. The survey was conducted during March 7–13 out of the UPRM Isla Magueyes Laboratories aboard the research vessel Sultana. Approximately 226 line kilometers of multichannel seismic reflection data were...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Applied Acoustics Delta sparker, CMHRP, Caribbean Sea, Coastal and Marine Hazards and Resources Program, DOI, All tags...
thumbnail
This data release contains reference baselines for primarily open-ocean sandy beaches along the west coast of the United States (California, Oregon and Washington). The slopes were calculated while extracting shoreline position from lidar point cloud data collected between 2002 and 2011. The shoreline positions have been previously published, but the slopes have not. A reference baseline was defined and then evenly-spaced cross-shore beach transects were created. Then all data points within 1 meter of each transect were associated with each transect. Next, it was determined which points were one the foreshore, and then a linear regression was fit through the foreshore points. Beach slope was defined as the slope...


map background search result map search result map DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Assawoman Island, VA, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Fisherman Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Parramore Island, VA, 2014 Coastal wetlands of eastern Long Island, New York (ver. 2.0, March 2024) Location and grain-size analysis results of sediment samples collected in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey, University of Connecticut, and University of New Haven during field activities 2017-056-FA and 2018-018-FA (simplified point shapefile and CSV files) Ultra-short baseline - navigation points and tracklines for Applied Acoustics EasyTrack Nexus 2 USBL data collected for ROV Global Explorer during USGS field activity 2017-001-FA Sea-floor videos and location of bottom video tracklines collected in Nantucket Sound, Massachusetts, in May 2016 and May 2017 by the U.S. Geological Survey during field activities 2016-005-FA and 2017-022-FA (MP4 video files and polyline shapefile) Polygon shapefile of data sources used to create a bathymetric terrain model of multibeam sonar data collected between 2005 and 2018 along the Queen Charlotte Fault System in the eastern Gulf of Alaska from Cross Sound, Alaska to Queen Charlotte Sound, Canada. (Esri polyon shapefile, UTM 8 WGS 84) Multichannel Seismic-Reflection and Navigation Data Collected Using SIG ELC1200 and Applied Acoustics Delta Sparkers and Geometrics GeoEel Digital Streamers During U.S. Geological Survey Field Activity 2020-014-FA, Southwest of Puerto Rico, March 2020 2010 Shorelines for Vieques, Culebra, and Main Island of Puerto Rico 1970s Shorelines for Vieques and Culebra, Puerto Rico Shorelines of the Florida panhandle (FLph) coastal region used in shoreline change analysis Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2008 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2014 Static chamber gas fluxes and carbon and nitrogen isotope content of age-dated sediment cores from a Phragmites wetland in Sage Lot Pond, Massachusetts, 2013-2015 Intersects for the Northern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Long-term shoreline change rates for the Southern California coastal region using the Digital Shoreline Analysis System version 5.0 2017 lidar-derived mean high water shoreline for the southern coast of North Carolina from Cape Lookout to Cape Fear (NCsouth) Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the southern coast of North Carolina from Cape Lookout to Cape Fear (NCsouth) Reference baselines used to extract shorelines for the West Coast of the United States Static chamber gas fluxes and carbon and nitrogen isotope content of age-dated sediment cores from a Phragmites wetland in Sage Lot Pond, Massachusetts, 2013-2015 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Fisherman Island, VA, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Assawoman Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Parramore Island, VA, 2014 Sea-floor videos and location of bottom video tracklines collected in Nantucket Sound, Massachusetts, in May 2016 and May 2017 by the U.S. Geological Survey during field activities 2016-005-FA and 2017-022-FA (MP4 video files and polyline shapefile) Multichannel Seismic-Reflection and Navigation Data Collected Using SIG ELC1200 and Applied Acoustics Delta Sparkers and Geometrics GeoEel Digital Streamers During U.S. Geological Survey Field Activity 2020-014-FA, Southwest of Puerto Rico, March 2020 1970s Shorelines for Vieques and Culebra, Puerto Rico Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2008 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2014 Coastal wetlands of eastern Long Island, New York (ver. 2.0, March 2024) Ultra-short baseline - navigation points and tracklines for Applied Acoustics EasyTrack Nexus 2 USBL data collected for ROV Global Explorer during USGS field activity 2017-001-FA 2010 Shorelines for Vieques, Culebra, and Main Island of Puerto Rico 2017 lidar-derived mean high water shoreline for the southern coast of North Carolina from Cape Lookout to Cape Fear (NCsouth) Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the southern coast of North Carolina from Cape Lookout to Cape Fear (NCsouth) Shorelines of the Florida panhandle (FLph) coastal region used in shoreline change analysis Intersects for the Northern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Long-term shoreline change rates for the Southern California coastal region using the Digital Shoreline Analysis System version 5.0 Polygon shapefile of data sources used to create a bathymetric terrain model of multibeam sonar data collected between 2005 and 2018 along the Queen Charlotte Fault System in the eastern Gulf of Alaska from Cross Sound, Alaska to Queen Charlotte Sound, Canada. (Esri polyon shapefile, UTM 8 WGS 84) Reference baselines used to extract shorelines for the West Coast of the United States