Skip to main content
Advanced Search

Filters: partyWithName: Curt D Storlazzi (X)

21 results (93ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset consists of physics-based Delft3D model and Delwaq model input files used in modeling sediment deposition and concentrations around the coral reefs of west Maui, Hawaii. The Delft3D models were used to simulate waves and currents under small (SC1) and large (‘SC2’) wave conditions for current stream discharge (‘Alt1’) and stream discharge with watershed restoration (‘Alt3’). Delft3D model results were subsequently used as forcing conditions for Delwaq models to simulate sediment transport and dispersion. The Delwaq models were used to simulate sediment transport and concentrations under the same two wave and stream discharge scenarios. The Delwaq models were run using forcing conditions generated by...
thumbnail
This data release provides flooding extent polygons based on sea-level rise and wave-driven total water levels for the coast of American Samoa's most populated islands of Tutuila, Ofu-Olosega, and Tau. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 resolution along these islands coastlines for annual (1-year), 20-year, and 100-year return-interval storm events and +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level rise scenarios.
This data release provides flooding extent polygons and flood depth rasters (geotiffs) based on sea-level rise and wave-driven total water levels for the coast of the most populated Hawaiian, Mariana, and American Samoan Islands. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10 square meter resolution along these islands’ coastlines for annual (1-year), 20-year, and 100-year return-interval storm events and +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level...
Categories: Data; Tags: CMHRP, Climate Change, Climatology, Coastal Processes, Coastal and Marine Hazards and Resources Program, All tags...
thumbnail
A set of physics-based XBeach Non-hydrostatic hydrodynamic model simulations (with input files here included) were used to evaluate how varying carbonate budgets, and thus coral reef accretion and degradation, affect alongshore variations in wave-driven water levels along the adjacent shoreline of Buck Island Reef National Monument (BUIS) for a number of sea-level rise scenarios, specifically during extreme wave conditions when the risk for coastal flooding and the resulting impact to coastal communities is greatest. These input files accompany the modeling conducted for the following publication: Toth, L.T., Storlazzi, C.D., Kuffner, I.B., Quataert, E., Reyns, J., McCall, R.T., Stathakopoulos, A., Hillis-Starr,...
thumbnail
OpenFOAM Computational Fluid Dynamics (CFD) models were developed to simulate wave energy dissipation across natural rough reef surfaces on the reef flat off Waiakane, Molokai, Hawaii, to understand this process in the context of reef restoration design. A total of 140 models were developed (70 per low- and 70 per high-bed-relief domains). Models were calibrated and validated with oceanographic datasets collected in 2018. This data release presents the 140 model scenarios that can be readily input into OpenFOAM to recreate the results, in addition to a csv file indicating the parameters used for each model scenario. These model data accompany Norris and others (2023) OpenFOAM Computational Fluid Dynamics (CFD) models...
Key Points Coastal flooding during storms negatively impacts access, infrastructure, and natural, cultural, and historical resources in parks. Coastal flooding is expected to become more frequent and more damaging in the future, because of rising seas and changes in the paths and intensities of storms. As sea levels rise, waves will break closer to shore and run-up will reach farther inland, increasing flood risk. On average, 0.25 meter (10 inches) of sea-level rise will double tropical storm flooding in parks.
This folder is used for organizational purposes only - see child pages below for data provided as flood extent polygons and flood depth rasters.
This folder is used for organizational purposes only - see child pages below for data provided as flood extent polygons and flood depth rasters.
thumbnail
Fine-sediment elemental chemistry and short-lived cosmogenic radionuclides (Beryllium-7, Cesium-137, and Lead-210) were quantified to describe land-based sediment sources and runoff to Olowalu Reef in February 2022. Charcoal counts, total organic carbon contents, and 76 urban- and wildfire-associated contaminants called polycyclic aromatic hydrocarbons (PAHs) were quantified to explore urban and wildfire effects in watersheds above Olowalu Reef and in reef sediment. Sampling occurred approximately two months after winter flooding and one month after tsunamigenic waves impinged on the Maui shore from the eruption of Hunga-Tonga volcano in the South Pacific. The USGS Coastal and Marine Hazards and Resources Program...
thumbnail
This data release provides flood depth GeoTIFFs based on sea-level rise and wave-driven total water levels for the coast of the most populated Mariana Islands of Guam and Saipan. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding in the populated Mariana Islands due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 resolution along the coastlines for annual (1-year), 20-year, and 100-year return-interval storm events and +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level rise scenarios.
thumbnail
This data release provides flooding extent polygons based on sea-level rise and wave-driven total water levels for the coast of the most populated Hawaiian Islands of Oahu, Molokai, Kauai, Maui, and Big Island. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 resolution along these islands' coastlines for annual (1-year), 20-year, and 100-year return-interval storm events and +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level rise scenarios.
thumbnail
This data release provides flood depth GeoTIFFs based on sea-level rise and wave-driven total water levels for the coast of the American Samoa’s most populated islands of Tutuila, Ofu-Olosega, and Tau. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding in the populated American Samoan Islands due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 resolution along the coastlines for annual (1-year), 20-year, and 100-year return-interval storm events and +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level rise scenarios.
Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding in the populated Hawaiian, Mariana, and American Samoan Islands as a result of climate change and sea-level rise. We followed a hybrid (dynamical and statistical) downscaling approach to map flooding due to waves and storm surge at 10-square meter resolution along all 1,870 kilometers of these islands’ coastlines for annual (1-year), 20-year, and 100-year return-interval storm events and +0.00 meter (m), +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level rise scenarios. We quantified the coastal flood depths and extents using the latest climate...
Categories: Publication; Types: Citation
thumbnail
Time-series data of water surface elevation, waves, currents, temperature, and turbidity collected between November 2017 and March 2018 off the west coast of Maui, Hawaii, USA. The data are available in NetCDF format, grouped together in zip files by instrument site location. These data support a modeling study on the effects of potential watershed restoration on decreasing sediment loads to adjacent reefs (Storlazzi and others, 2023).
Key Points Coastal flooding during storms negatively impacts access, infrastructure, and natural resources in refuges. Coastal flooding is expected to become more frequent and more damaging in the future, because of rising seas and changes in the paths and intensities of storms. As sea levels rise, waves will break closer to shore and run-up will reach farther inland, increasing flood risk. On average, 0.25 meter (10 inches) of sea-level rise will triple tropical storm flooding in refuges.
thumbnail
This data release provides flood depth GeoTIFFs based on sea-level rise and wave-driven total water levels for the coast of the most populated Hawaiian Islands of Oahu, Molokai, Kauai, Maui, and Big Island. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding in the populated Hawaiian Islands due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 resolution along the coastlines for annual (1-year), 20-year, and 100-year return-interval storm events and +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level rise scenarios.
thumbnail
This data release provides flooding extent polygons based on sea-level rise and wave-driven total water levels for the coast of the most populated Mariana Islands of Guam and Saipan. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 resolution along these islands coastlines for annual (1-year), 20-year, and 100-year return-interval storm events and +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level rise scenarios.
This folder is used for organizational purposes only - see child pages below for data provided as flood extent polygons and flood depth rasters.


map background search result map search result map Model parameter input files to compare the influence of coral reef carbonate budgets on alongshore variations in wave-driven total water levels on Buck Island Reef National Monument Model parameter input files to compare effects of stream discharge scenarios on sediment deposition and concentrations around coral reefs off west Maui, Hawaii Time-series data of water surface elevation, waves, currents, temperature, and turbidity collected between November 2017 and March 2018 off the west coast of Maui, Hawaii, USA Projected coastal flooding extents for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Hawaiian Islands Projected coastal flooding depths for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Hawaiian Islands Projected coastal flooding depths for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Mariana Islands Projected coastal flooding extents for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Mariana Islands Projected coastal flooding depths for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in American Samoa Projected coastal flooding extents for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in American Samoa Metals and PAHs in watershed soil and reef sediment at Olowalu and leeward Maui, February 2022 Parent and alkylated polycyclic aromatic hydrocarbons (PAHs) in watershed soil and reef sediment at Olowalu, Maui, 2022 Elemental chemistry, radionuclides, and charcoal in watershed soil and reef sediment at Olowalu, Maui, 2022 Model parameter input files to compare the influence of coral reef carbonate budgets on alongshore variations in wave-driven total water levels on Buck Island Reef National Monument Time-series data of water surface elevation, waves, currents, temperature, and turbidity collected between November 2017 and March 2018 off the west coast of Maui, Hawaii, USA Metals and PAHs in watershed soil and reef sediment at Olowalu and leeward Maui, February 2022 Parent and alkylated polycyclic aromatic hydrocarbons (PAHs) in watershed soil and reef sediment at Olowalu, Maui, 2022 Elemental chemistry, radionuclides, and charcoal in watershed soil and reef sediment at Olowalu, Maui, 2022 Model parameter input files to compare effects of stream discharge scenarios on sediment deposition and concentrations around coral reefs off west Maui, Hawaii Projected coastal flooding depths for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Mariana Islands Projected coastal flooding extents for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Mariana Islands Projected coastal flooding extents for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Hawaiian Islands Projected coastal flooding depths for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Hawaiian Islands