Skip to main content
Advanced Search

Filters: partyWithName: Jason W Kean (X)

28 results (10ms)   

View Results as: JSON ATOM CSV
This data release includes 2016-2019 soil moisture timeseries for two drainage basins (“Arroyo Seco” and “Dunsmore Canyon”) that burned during the 2009 Station Fire in Los Angeles County, California, USA. The Arroyo Seco (0.01 km2) and Dunsmore Canyon (0.5 km2) drainages include two soil pits, one located near the drainage divide and another near the basin outlet. Following the naming convention established by Smith et al. (2019), we refer to the soil pits near the Arroyo Seco drainage divide and basin outlet as “AS1” and “AS3,” respectively. Similarly, we refer to the soil pits near the Dunsmore Canyon drainage divide and basin outlet as “DC1” and “DC3,” respectively. The coordinates of AS1 and AS3 are, respectively,...
thumbnail
Chalk Cliffs, located 8 miles southwest of Buena Vista, Colorado, is one of the most active debris-flow areas in the state (U.S. Geological Survey). This "Child item" page includes videos of debris flows captured by one of the high-definition cameras at the monitoring site in Chalk Cliffs, CO. This camera (Wide-angle camera) is located near Station 1 on the opposite side of the basin with a broad view of the channel. The attached figure "station_and_camera_locations.png" provides an overview figure with the location of the three cameras and three stations along the channel. Video recording for all cameras is triggered using a rainfall threshold, derived from rainfall measurements from a rain gauge (Michel et al.,...
thumbnail
Chalk Cliffs, located 8 miles southwest of Buena Vista, Colorado, is one of the most active debris-flow areas in the state (U.S. Geological Survey). Three stations were set up at Chalk Cliffs which are located sequentially along a channel draining the 0.3 km2 study area. These stations are equipped with rain gauges, laser distance meters, and data loggers to record rainfall and stage data (Kean, et al., 2020). This data release includes videos of debris-flows and floods captured by high-definition cameras placed at two different locations, associated with the monitoring stations, along the study area at Chalk Cliffs during 2015. Both cameras are located near the Upper Station (Station 1). One is located at the bridge...
Rainfall on 9–13 September 2013 triggered at least 1,138 debris flows in a 3430 km 2 area of the Colorado Front Range. Most flows were triggered in response to two intense rainfall periods, one 12.5-hour-long period on 11–12 September, and one 8-hour-long period on 12 September. Data in this project pertain to an area bounded by N 40.0° – 40.375° and W 105.25° – 105.625° which includes many of the areas where high concentrations of debris flows occurred. These data include a subset of a map of landslide and debris flow scarps (Coe and others, 2014) and raster grids derived from the National Elevation Dataset. These data were used to test a new, parallel implementation of the Transient Rainfall Infiltration and...
thumbnail
Summary This data release is a field-verified inventory of postfire debris flows for the 2021 Dixie Fire following a 23-25 October 2021 atmospheric river storm and 12 June 2022 thunderstorm. The “README.txt” file describes the fields for the “Inventory.csv” file. The “Chambers” and “Chips” rain gage data referenced in the inventory are included as: “Chambers-Oct2021-Storm.csv”, “Chambers-Jun2022-Storm.csv”, “Chips-Oct2021-Storm.csv”, and “Chips-Jun2022-Storm.csv.” The fields for the rain gage data, which includes the geographic locations of the gages, are also described in the “README.txt” file. Fields with value “-9999” indicate that data are not available or do not exist.
thumbnail
Chalk Cliffs, located 8 miles southwest of Buena Vista, Colorado, is one of the most active debris-flow areas in the state (U.S. Geological Survey). This "Child item" page includes videos of debris flows captured by one of the high-definition cameras at the monitoring site in Chalk Cliffs, CO. This camera (Middle camera) is located near Station 2. The attached figure "station_and_camera_locations.png" provides an overview figure with the location of the three cameras and three stations along the channel. Video recording for all cameras is triggered using a rainfall threshold, derived from rainfall measurements from rain gauges (Michel et al., 2019). The complete videos for all the cameras are downloaded manually...
thumbnail
This data release includes 2014 time-series data from three debris-flow monitoring stations at Chalk Cliffs in Chaffee County, Colorado, USA. The data were collected to help identify the triggering conditions, magnitude, and mobility of debris flows at the site. The three stations are located sequentially along a channel draining the 0.3 km^2 study area. The Upper, Middle, and Lower stations have respective drainage areas of 0.06, 0.16, and 0.24 km^2. The location (UTM zone 13) of each station is: 396826E/4287851N (Upper), 396893E/ 4287815N (Middle), and 396929E/4287712N (Lower). See also “ChalkStationLocations.jpg” in the README.zip file. The 2014 data includes three types of time series: (1) 1-minute time series...
thumbnail
This data release includes time-series data from a monitoring site located in a small (0.12 km2) drainage basin in the Las Lomas watershed in Los Angeles County, CA, USA. The site was established after the 2016 Fish Fire and recorded a series debris flows in the first winter after the fire. The station is located along the channel at the outlet of the study area (34 9’18.50”N, 117 56’41.33”W, WGS84). The data were collected between November 15, 2016 and February 23, 2017. The data include two types of time series: (1) continuous 1-minute time series of rainfall and flow stage recorded by a laser distance meter suspended over the channel (LasLomasContinuous.csv), and (2) 50-Hz time series of flow stage and flow-induced...
thumbnail
This data release includes time-series data from two monitoring stations in drainage basins burned in the 2009 Station Fire, Los Angeles County, California. Both stations are located near the upper boundary of their respective watershed and were installed to study the effects of vegetation recovery on hillslope hydrology and debris-flow occurrence. The coordinates of the Arroyo Seco site are 34°14'13.10"N, 118°11'44.72"W. The coordinates for the Dunsmore Canyon hillslope site are 34°15'54.27"N, 118°14'14.41"W. The data include 1-minute time series of rainfall, soil water content, soil temperature, and soil matric potential recorded at two locations at both stations: AS1, AS2, DC1, DC2. The two locations at each...
thumbnail
This data release supports the analysis of the recurrence interval of post-fire debris-flow generating rainfall in the southwestern United States. We define the recurrence interval of the peak 15-, 30-, and 60-minute rainfall intensities for 316 observations of post-fire debris-flow occurrence in 18 burn areas, 5 U.S. states, and 7 climate types. These data support the analysis described in Staley et al. (2020). Debris flow occurrence data and corresponding peak rainfall intensities are from Staley et al. (2016). Recurrence interval data are from NOAA Atlas 14 Volume 1: semiarid southwestern United States (Bonnin et al., 2004), Volume 6: California (Perica et al., 2014) and Volume 8: Midwestern States (Perica...
thumbnail
Chalk Cliffs, located 8 miles southwest of Buena Vista, Colorado, is one of the most active debris-flow areas in the state (U.S. Geological Survey). This "Child item" page includes videos of debris flows captured by one of the high-definition cameras at the monitoring site in Chalk Cliffs, CO. This camera (Bridge Camera) is located at Station 1 which is at the bridge cross section at the channel. The attached figure "station_and_camera_locations.png" provides an overview figure with the location of the two cameras and three stations along the channel. Video recording for all cameras is triggered using a rainfall threshold, derived from rainfall measurements from a rain gauge (Michel et al., 2019). The complete...
thumbnail
On September 20, 2017, Hurricane Maria hit the U.S. territory of Puerto Rico as a category 4 storm. Heavy rainfall caused landslides in mountainous regions throughout the territory. This data release presents geospatial data describing the concentration of landslides generated by Hurricane Maria in Puerto Rico. We used post-hurricane satellite and aerial imagery collected between September 26, 2017 and October 8, 2017 to visually estimate the concentration of landslides over nearly the whole territory. This was done by dividing the territory into a grid with 4 square km cells (2 km x 2 km). Each 4 square km grid cell was classified as either containing no landslides, fewer than 25 landslides/ square km or more than...
thumbnail
On May 25, 2014, a rain-on-snow induced rock avalanche occurred in the West Salt Creek Valley on the northern flank of Grand Mesa in western Colorado. The avalanche traveled 4.6 km down the confined valley, killing 3 people. The avalanche was rare for the contiguous U.S. because of its large size (54.5 Mm3) and long travel distance. To understand the avalanche failure sequence, mechanisms, and mobility, we mapped landslide structures, geology, and ponds at 1:1000-scale. We used high-resolution, Unmanned Aircraft System (UAS) imagery from July 2014 as a base for our field mapping. Here we present the map data and UAS imagery. The data accompany an interpretive paper published in the journal Geosphere. The full citation...
thumbnail
This data release includes time-series data of rock temperature, air temperature, wind speed, and humidity at the Chalk Cliffs debris-flow monitoring site in central Colorado (Latitude: 38.73330, Longitude: -106.18704). The data were collected to help identify the environmental controls on rates of rockfall, which is the primary source of debris-flow material at the site. Data were recorded at 1-minute intervals between November 2011 and August 2015. Data collection was occasionally interrupted during maintenance periods or when there was a problem with the power supply. Two probes measured profiles of rock temperature at depths of 0, 1, 2, 4, 8, 16, 24, 32, and 42 cm below the rock surface. One probe was placed...
thumbnail
Chalk Cliffs, located 8 miles southwest of Buena Vista, Colorado, is one of the most active debris-flow areas in the state (U.S. Geological Survey). Three stations were set up at Chalk Cliffs which are located sequentially along a channel draining the 0.3 km^2 study area. This data release includes videos of debris-flows and floods captured by high-definition cameras placed at four different locations along the study area at Chalk Cliffs during 2017. Near the Upper Station (Station 1) there are two cameras, one located at the bridge cross section at the channel (Bridge Camera) and another on the opposite side of the basin with a broad view of the channel (Wide-angle Camera). The third camera is located near Station...
thumbnail
Chalk Cliffs located 8 miles southwest of Buena Vista, Colorado, is one of the most active debris-flow areas in the state (U.S. Geological Survey). Three stations were set up at Chalk Cliffs which are located sequentially along a channel draining the 0.3 km2 study area. These stations are equipped with rain gauges, laser distance meters, and data loggers to record rainfall and stage data (Kean, et al., 2020). This data release includes videos of debris-flows and floods captured by high-definition cameras placed at three different locations, associated with the monitoring stations, along the study area at Chalk Cliffs during 2016. Near the Upper Station (Station 1) there are two cameras, one located at the bridge...
thumbnail
These data were compiled for/to provide an example and assess methods and results of pre-fire estimation of predicted differenced normalized burn ration (dNBR) for predicting post-fire debris flow hazard classification. Objective(s) of our study were to develop predictive models for burn severity, using variables of pre-fire conditions, for two large wildfires from 2020 in Colorado, USA. These data represent pre-fire predictions of post-fire differenced normalized burn ratio (dNBR) as a proxy of burn severity and further understand pre-fire modeling of burn severity. These data were collected/created in the fire perimeters the East Troublesome Fire (10/14/2020 – 11/30/2020) and the Grizzly Creek Fire (8/10/2020...
Tags: Arapaho National Forest, Botany, Colorado, East Fork Troublesome Creek, East Troublesome Fire, All tags...
thumbnail
On 9 January 2018, intense rain above Montecito, California triggered a series of debris flows from steep catchments in the Santa Ynez Mountains. These catchments were burned three weeks earlier by the 1140 km2 Thomas Fire. After exiting the mountain front, the debris flows traveled over 3 km down a series of alluvial fans, killing 23 people and damaging over 400 homes. To understand the flow dynamics and damage of the debris flows and to provide a data set for testing debris-flow runout models, we mapped the inundation characteristics of the five main debris-flow runout paths in Montecito. Here we present our map data on the boundaries of debris-flow inundation, flow depth, and deposit characteristics and link...
thumbnail
Chalk Cliffs, located 8 miles southwest of Buena Vista, Colorado, is a natural laboratory for research on runoff-initiated debris flows (Coe et al., 2010). In 2019, there were two monitoring stations operating at Chalk Cliffs. The Upper Station drains an area of 0.06 km2 and was used to monitor flow properties and triggering conditions in the headwaters of the study area. It was equipped with two rain gauges, a laser distance meter to measure flow stage, two geophones to record ground vibrations, a force plate to measure the basal impact forces of the flow, and two downward looking video cameras to record flow characteristics (Kean et al., 2020). The Firehose Station is located on the perimeter of the study area...
thumbnail
This data release contains gridded estimates of postfire debris flow probability and magnitude for six different rainfall and wildfire scenarios in southern California. The scenarios represent the present and possible future precipitation and fire regimes for the region. The results are provided for 1 km2 cells across the study area. The data release accompanies the journal article Kean, J.W. and Staley, D.M. (2021). Forecasting the frequency and magnitude of postfire debris flow across southern California, Earth's Future, 2020EF001735.


map background search result map search result map Map data and Unmanned Aircraft System imagery from the May 25, 2014 West Salt Creek rock avalanche in western Colorado Map data showing concentration of landslides caused by Hurricane Maria in Puerto Rico Hillslope hydrologic monitoring data following the 2009 Station Fire, Los Angeles County, California, November 2015 to June 2017 Post-wildfire debris-flow monitoring data, Las Lomas, 2016 Fish Fire, Los Angeles County, California, November 2016 to February 2017 Debris-flow inundation and damage data from the 9 January 2018 Montecito debris-flow event Monitoring environmental controls on debris-flow sediment supply, Chalk Cliffs, Colorado, 2011 to 2015 Debris-flow monitoring data, Chalk Cliffs, Colorado, USA, 2014 Data supporting an analysis of the recurrence interval of post-fire debris-flow generating rainfall in the southwestern United States Debris-flow video files, Chalk Cliffs, Colorado, USA, 2017 Debris-flow and Flood Video Files, Chalk Cliffs, Colorado, USA, 2016 Debris-flow Video Files for Middle Camera (Station 2), Chalk Cliffs, Colorado, USA, 2016 Debris Flow Video Files for Wide Angle Camera (Station 1), Chalk Cliffs, Colorado, USA, 2016 Debris-flow and Flood Video Files, Chalk Cliffs, Colorado, USA, 2015 Debris Flow Video Files for Bridge Camera (Station 1), Chalk Cliffs, Colorado, USA, 2015 Gridded estimates of postfire debris flow frequency and magnitude for southern California Soil moisture monitoring following the 2009 Station Fire, California, USA, 2016-2019 Debris-flow and Flood Video Files, Chalk Cliffs, Colorado, USA, 2019 Modeling data for burn severity of the East Troublesome and Grizzly Creek for integration with post-fire debris flow in the upper Colorado River basin, USA Field-verified inventory of postfire debris flows for the 2021 Dixie Fire following a 23-25 October 2021 atmospheric river storm and 12 June 2022 thunderstorm Post-wildfire debris-flow monitoring data, Las Lomas, 2016 Fish Fire, Los Angeles County, California, November 2016 to February 2017 Monitoring environmental controls on debris-flow sediment supply, Chalk Cliffs, Colorado, 2011 to 2015 Debris-flow video files, Chalk Cliffs, Colorado, USA, 2017 Debris-flow and Flood Video Files, Chalk Cliffs, Colorado, USA, 2016 Debris-flow Video Files for Middle Camera (Station 2), Chalk Cliffs, Colorado, USA, 2016 Debris Flow Video Files for Wide Angle Camera (Station 1), Chalk Cliffs, Colorado, USA, 2016 Debris-flow and Flood Video Files, Chalk Cliffs, Colorado, USA, 2015 Debris Flow Video Files for Bridge Camera (Station 1), Chalk Cliffs, Colorado, USA, 2015 Debris-flow and Flood Video Files, Chalk Cliffs, Colorado, USA, 2019 Debris-flow monitoring data, Chalk Cliffs, Colorado, USA, 2014 Hillslope hydrologic monitoring data following the 2009 Station Fire, Los Angeles County, California, November 2015 to June 2017 Map data and Unmanned Aircraft System imagery from the May 25, 2014 West Salt Creek rock avalanche in western Colorado Field-verified inventory of postfire debris flows for the 2021 Dixie Fire following a 23-25 October 2021 atmospheric river storm and 12 June 2022 thunderstorm Soil moisture monitoring following the 2009 Station Fire, California, USA, 2016-2019 Map data showing concentration of landslides caused by Hurricane Maria in Puerto Rico Modeling data for burn severity of the East Troublesome and Grizzly Creek for integration with post-fire debris flow in the upper Colorado River basin, USA Gridded estimates of postfire debris flow frequency and magnitude for southern California Data supporting an analysis of the recurrence interval of post-fire debris-flow generating rainfall in the southwestern United States