Skip to main content
Advanced Search

Filters: partyWithName: PCMSC Science Data Coordinator (X)

748 results (56ms)   

Filters
Date Range
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
A three-dimensional hydrodynamic and sediment transport model application of the mouth of the Columbia River (MCR) was constructed using the Delft3D4 (D3D) modeling suite (Deltares, 2021) to simulate water levels, flow, waves, and sediment transport for time period of September 22, 2020 to March 10, 2021. The model was used to predict the dispersal of sediment from a submerged, nearshore berm composed of sediment that was dredged from the entrance to the MCR navigation channel and placed on the northern flank of the ebb-tidal delta. This data release describes the development and validation of the model application and provides input files suitable to run the models on D3D software version 4.04.01.
This dataset consists of rate-of-change statistics for the shorelines at Barter Island, Alaska for the time period 1947 to 2020. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.0, an ArcGIS extension developed by the U.S. Geological Survey. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate shoreline change rates.
thumbnail
This part of the data release presents projected flooding extent polygon shapefiles based on wave-driven total water levels for the State Florida (the Florida Peninsula and the Florida Keys). There are eight associated flood mask and flood depth shapefiles: one for each of four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years), the pre-storm scenario (base) and the post-storm scenarios.
thumbnail
Seafloor photographs were collected by SCUBA divers along pre-determined transects using an underwater digital camera following benthic survey protocols developed by the National Park Service (NPS) at Kaloko-Honokohau National Historical Park (Marrack and others, 2014; Weijerman and others, 2014) and modeled after the U.S. Geological Survey (USGS) and NPS coral reef survey protocols (Rogers and others, 2001; Brown and others, 2011). This dataset includes seafloor photographs in jpg format, the locations of which are described in the accompanying comma-separated files. References Cited: Marrack, L., Beavers, S., Weijerman, M., Most, R., 2014, Baseline assessment of the coral reef habitat in Kaloko-Honokōhau National...
thumbnail
Water depth and turbidity time-series data were collected in Little Holland Tract (LHT) from 2015 to 2017. Depth (from pressure) was measured in high-frequency (6 or 8 Hz) bursts. Burst means represent tidal stage, and burst data can be used to determine wave height and period. The turbidity sensors were calibrated to suspended-sediment concentration measured in water samples collected on site. The calibration and fit parameters for all of the turbidity sensors used in the study are tabulated and provided with the data. Data were sequentially added to this data release as they were collected and post-processed. Typically, each zip folder for a deployment period contains one file from an optical backscatter...
thumbnail
This raster dataset represents approximately 49,581 square kilometers of Simrad EM122 multibeam backscatter-intensity data collected in the Bering Sea during U.S. Geological Survey (USGS) cruise MGL1111 aboard the R/V Marcus G. Langseth. Calibrated backscatter-intensity time-series data were adjusted for range-angle, beam pattern, and power-gain distortions.
thumbnail
This raster dataset represents approximately 49,581 square kilometers of Simrad EM122 multibeam backscatter-intensity data collected in the Bering Sea during U.S. Geological Survey (USGS) cruise MGL1111 aboard the R/V Marcus G. Langseth. Calibrated backscatter-intensity time-series data were adjusted for range-angle, beam pattern, and power-gain distortions.
thumbnail
These data present suspended particle size distributions collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center at three locations in the Sacramento-San Joaquin Delta. Data were collected in Lindsey Slough on April 4 and April 18, 2017, and near the mouth of the Mokelumne River and in Middle River on March 14, 2018 by deploying a Sequoia Scientific Laser In-situ Scattering and Transmissometry instrument (LISST 100x) from a small vessel during the deployment of the hydrographic time series data instruments. At each site, data were collected 1 to 2 times, generally near the water surface, at mid depth, and near the sediment bed. These data were collected as part of a study on the...
thumbnail
This part of the data release provides the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) 2005 bathymetry data collected in Skagit Bay Washington that is provided as a 1-m resolution TIFF image, as well as a 1-m resolution shaded-relief TIFF image. FGDC metadata is also provided. In 2004, 2005, 2007, and 2010 the USGS, PCMSC collected bathymetry and acoustic backscatter data in Skagit Bay, Washington using an interferometric bathymetric sidescan-sonar system mounded to the USGS R/V Parke Snavely and the USGS R/V Karluk. The research was conducted in coordination with the Swinomish Indian Tribal Community, Skagit River System Cooperative, Skagit Watershed Council, Puget Sound Nearshore...
thumbnail
These metadata describe bathymetric data collected during a December 2018 SWATHPlus survey of Whiskeytown Lake, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) during fieldwork activity number 2018-686-FA. The bathymetric data are provided as a GeoTIFF image.
thumbnail
An unoccupied aerial system (UAS) was used to acquire high-resolution imagery of the exposed reservoir delta at Los Padres Reservoir, in the Carmel River valley in central California on 1 November 2017. This survey followed sediment delivery to the reservoir by the Carmel River due to landscape response after the 2016 Soberanes Fire and high flows in winter 2017. The imagery from this survey was processed using structure-from-motion (SfM) photogrammetric techniques to derive a high-resolution digital surface model (DSM), a digital elevation model (DEM), an orthomosaic image, and a topographic point cloud. A total of six flights were conducted for the survey between 19:35 and 22:15 UTC (12:35 and 15:15 PDT). Only...
Categories: Data; Tags: Geomorphology, Remote Sensing
thumbnail
This portion of the data release presents a digital surface model (DSM) and digital elevation model (DEM) of the exposed Los Padres Reservoir delta where the Carmel River enters the reservoir. The DSM and DEM have a resolution of 10 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unoccupied aerial system (UAS) on 2017-11-01. The DSM represents the elevation of the highest object within the bounds of a cell, including vegetation, woody debris and other objects. The DEM represent the elevation of the ground surface where it was visible to the acquisiton system. Due to the nature of SfM processing, the DEM may not represent a true bare-earth surface...
thumbnail
This data release includes representative cluster profiles (RCPs) from a large (>24,000) selection of coral reef topobathymetric cross-shore profiles (Scott and others, 2020). We used statistics, machine learning, and numerical modelling to develop the set of RCPs, which can be used to accurately represent the shoreline hydrodynamics of a large variety of coral reef-lined coasts around the globe. In two stages, the data were reduced by clustering cross-shore profiles based on morphology and hydrodynamic response to typical wind and swell wave conditions. By representing a large variety of coral reef morphologies with a reduced number of RCPs, a computationally feasible number of numerical model simulations can be...


map background search result map search result map MGL1109backsgeo.asc: Multibeam backscatter data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gridded data in Esri gridascii format, geographic coordinate system MGL1109backsutm.asc: Multibeam backscatter data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gridded data in Esri gridascii format, UTM 6 coordinates MGL1111backsutm.sd: Multibeam backscatter data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded data in Fledermaus digital terrain format, UTM zone 60 coordinates MGL1111shadeutm.tif: Multibeam bathymetry data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded shaded bathymetric relief in GeoTIFF format Swell-filtered, high-resolution seismic-reflection data collected between Punta Gorda and Fort Bragg (northern California) during field activity B-04-12-NC from 09/17/2012 to 09/25/2012 High-resolution bathymetry data collected in 2005 in Skagit Bay, Washington Water-level, wind-wave, and suspended-sediment concentration (SSC) time-series data from Little Holland Tract (station HWC), Sacramento-San Joaquin Delta, California, 2015-2017 (ver. 2.0, September, 2019) Bathymetric data for Whiskeytown Lake, December 2018 (ver. 2.0, July 2021) Suspended particle size distribution data from three locations in the Sacramento-San Joaquin Delta, California, 2017 to 2018 Nearshore bathymetry data from the Elwha River delta, Washington, January 2015, collected from personal watercraft Digital Shoreline Analysis System (DSAS) version 5.0 transects with shoreline rate change calculations at Barter Island Alaska, 1947 to 2020 Projected flooding extents and depths based on 10-, 50-, 100-, and 500-year wave-energy return periods for the State of Florida before and after Hurricanes Irma and Maria due to the storms' damage to the coral reefs Time-series oceanographic data collected from reef flat and lagoon sediment dynamics packages in 2016 off Jurabi Point, Ningaloo Reef, Western Australia (ver. 2.0) Suspended sediment concentration (SSC) in the San Lorenzo River, Santa Cruz, California, USA, from 2008 to 2019 Hydrodynamic and sediment transport model of the mouth of the Columbia River, Washington and Oregon, 2020-2021 Digital surface model (DSM) and digital elevation model (DEM) of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01 Digital surface model (DSM) and digital elevation model (DEM) of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01 Time-series oceanographic data collected from reef flat and lagoon sediment dynamics packages in 2016 off Jurabi Point, Ningaloo Reef, Western Australia (ver. 2.0) Nearshore bathymetry data from the Elwha River delta, Washington, January 2015, collected from personal watercraft Water-level, wind-wave, and suspended-sediment concentration (SSC) time-series data from Little Holland Tract (station HWC), Sacramento-San Joaquin Delta, California, 2015-2017 (ver. 2.0, September, 2019) Bathymetric data for Whiskeytown Lake, December 2018 (ver. 2.0, July 2021) High-resolution bathymetry data collected in 2005 in Skagit Bay, Washington Digital Shoreline Analysis System (DSAS) version 5.0 transects with shoreline rate change calculations at Barter Island Alaska, 1947 to 2020 Suspended particle size distribution data from three locations in the Sacramento-San Joaquin Delta, California, 2017 to 2018 Projected flooding extents and depths based on 10-, 50-, 100-, and 500-year wave-energy return periods for the State of Florida before and after Hurricanes Irma and Maria due to the storms' damage to the coral reefs Hydrodynamic and sediment transport model of the mouth of the Columbia River, Washington and Oregon, 2020-2021 MGL1109backsgeo.asc: Multibeam backscatter data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gridded data in Esri gridascii format, geographic coordinate system MGL1109backsutm.asc: Multibeam backscatter data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gridded data in Esri gridascii format, UTM 6 coordinates MGL1111backsutm.sd: Multibeam backscatter data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded data in Fledermaus digital terrain format, UTM zone 60 coordinates MGL1111shadeutm.tif: Multibeam bathymetry data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded shaded bathymetric relief in GeoTIFF format