Skip to main content
Advanced Search

Filters: Types: OGC WMS Layer (X) > partyWithName: New York State Energy Research Development Authority (X) > partyWithName: Douglas A Burns (X)

5 results (6ms)   

Filters
Date Range
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Summary The Environmental Protection Agency’s (EPA) Long Term Monitoring (LTM) network has supported the collection of stream chemistry data in the Catskills since the 1990s. Trends in stream chemistry have periodically been evaluated in these streams but the most recent assessments only extend through the early 2000s. An updated assessment of stream chemistry trends will help evaluate the effects of recent substantial declines in acid deposition during the last decade. This study will evaluate changes in surface water chemistry from 1991 through 2013 at 5 stations in the Neversink and Rondout watersheds in the Catskill Mountains of New York. The results will be compared to changes in atmospheric deposition...
thumbnail
Problem - Acidic precipitation has affected forested and aquatic ecosystems in New York, particularly in the Adirondack and Catskill regions. Acidification of surface waters and deleterious effects on fish and other biota have been well documented in both these regions. Despite reduced levels of acidity in atmospheric deposition over the past 20 years across New York and the northeastern United States, the most acid-sensitive streams and lakes have not yet begun to recover, and many show continued declines in acid-neutralizing capacity, an indicator acid-base status. Many studies have documented the effects of acid precipitation in New York, but thus far, there has been no comprehensive effort to synthesize and...
thumbnail
BACKGROUND The Adirondack region of New York has a history of relatively high atmospheric sulfur (S) and nitrogen (N) deposition (Greaver et al. 2012). Adirondack ecosystems have been impacted by these inputs, including soil and surface water acidification, and impaired health and diversity of forest vegetation and aquatic biota. Air quality management, through the Clean Air Act, the U.S. Environmental Protection Agency NOx Budget Trading Program, and the Clean Air Interstate Rule (CAIR) has resulted in decreases in atmospheric S and N deposition in the Adirondacks and throughout the eastern U.S. (Lehmann et al., 2005), which is driving the recovery of surface waters from past acidification. Section 303(d)...
thumbnail
Background Although New York State has more than 70,000 miles of streams and rivers, little is known about the status, distribution, and trends of mercury (Hg) levels in stream fish, or the environmental drivers of these patterns. Streams and their riparian zones provide critical habitat for fish, birds, mammals, reptiles and amphibians, and serve as the interface between aquatic and terrestrial Hg transfer, transformations (most notably methylation) and bioaccumulation. Importantly, monitoring data from lakes (e.g., Simonin et al. 2006) does not transfer reliably to streams because of fundamental differences in Hg cycling and bioaccumulation processes. An assessment of fish Hg bioaccumulation focused on New...
thumbnail
The Catskill Mountains of southeastern New York receive among the highest loads of acid deposition in New York and the northeastern U.S. Additionally, the Catskills are underlain by sandstone and conglomerate, which is base poor and weathers slowly. Thus, the Catskills contain numerous streams with low (< 50 µeq/L) acid-neutralizing capacity (ANC) and are sensitive to impacts from atmospheric acid deposition. Since at least 1983, however, the levels of acidity in atmospheric deposition (primarily sulfuric acid) have been declining in the Catskills and throughout New York. While widespread recovery of streams in the Catskills has not yet been confirmed, recent data suggest that recovery in waters with ANC values...


    map background search result map search result map Potential Recovery of Water Chemistry and Stream Biota from Reduced Levels of Acid Deposition at a Sensitive Watershed in the Catskill Mountains, New York An Integrated Assessment of the Recovery of Surface Waters from Reduced Levels of Acid Precipitation in the Catskill and Adirondack Regions, New York Changes in Soil and Stream Water Chemistry in Response to Reduction in Acid Deposition in the Catskills Mercury Bioaccumulation in Fish in New York's Streams and Rivers Acidification and Recovery and Development of Critical Loads of Acidity for Stream Ecosystems of the Adirondack Region of New York State Potential Recovery of Water Chemistry and Stream Biota from Reduced Levels of Acid Deposition at a Sensitive Watershed in the Catskill Mountains, New York Changes in Soil and Stream Water Chemistry in Response to Reduction in Acid Deposition in the Catskills Acidification and Recovery and Development of Critical Loads of Acidity for Stream Ecosystems of the Adirondack Region of New York State An Integrated Assessment of the Recovery of Surface Waters from Reduced Levels of Acid Precipitation in the Catskill and Adirondack Regions, New York Mercury Bioaccumulation in Fish in New York's Streams and Rivers