Skip to main content
Advanced Search

Filters: Categories: Project (X) > Types: OGC WFS Layer (X)

2,112 results (23ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Wildfires scorched 10 million acres across the United States in 2015, and for the first time on record, wildfire suppression costs topped $2 billion. Wildfire danger modeling is an important tool for understanding when and where wildfires will occur, and recent work by our team in the South Central United States has shown wildfire danger models may be improved by incorporating soil moisture information. Advancements in wildfire danger modeling may increase wildfire preparedness, and therefore decrease loss of life, property, and habitat due to wildfire. Still, soil moisture—an important determinant of wildfire risk—is not currently used for wildfire danger assessments because data are generally unavailable at the...
thumbnail
Spatial data depicting marsh types (e.g. fresh, intermediate, brackish and saline) for the north-central Gulf of Mexico coast are inconsistent across the region, limiting the ability of conservation planners to model the current and future capacity of the coast to sustain priority species. The goal of this study was to (1) update the resolution of coastal Texas vegetation data to match that of Louisiana, Mississippi, and Alabama, and (2) update vegetation maps for the Texas through Alabama region using current Landsat Imagery. Creating consistent regional vegetation maps will enable scientists to model vegetation response to and potential impacts of future climate change.
thumbnail
Climate change is poised to alter natural systems, the frequency of extreme weather, and human health and livelihoods. In order to effectively prepare for and respond to these challenges in the north-central region of the U.S., people must have the knowledge and tools to develop plans and adaptation strategies. The objective of this project was to build stakeholders’ capacity to respond to climate change in the north-central U.S., filling in gaps not covered by other projects in the region. During the course of this project, researchers focused on three major activities: Tribal Capacity Building: Researchers provided tribal colleges and universities with mini-grants to develop student projects to document climate-related...
thumbnail
Prairies were once widespread across North America, but are now one of the most endangered and least protected ecosystems in the world. Agriculture and residential development have reduced once extensive prairies into a patchwork of remnant prairies and “surrogate” grasslands (e.g., hayfields, planted pastures). Grassland ecosystems and many grassland-dependent birds are also particularly vulnerable to rapid shifts in climate and associated changes in drought and extreme weather. The Central Flyway is a vast bird migration route that comprises more than half of the continental U.S., and extends from Central America to Canada, and harbors the greatest diversity of grassland birds in North America. Throughout this...
thumbnail
As climate change progresses, profound environmental changes are becoming a widespread concern. A new management paradigm is developing to address this concern with a framework that encourages strategic decisions to resist, accept, or direct ecological trajectories. Effective use of the Resist-Accept-Direct (RAD) framework requires the scientific community to describe the range of plausible ecological conditions managers might face, while recognizing limits to our ability to predict precisely where or how specific climatic changes may unfold or how complex environmental systems will respond - the climatic future does not fully determine the ecological one. Recent advances have improved development and delivery...
thumbnail
The climate of the North Central U.S. is driven by a combination of factors, including atmospheric circulation patterns, the region’s complex topography which extends from the High Rockies to the Great Plains, and variations in hydrology. Together, these factors determine the sustainability of the region’s ecosystems and the services that they provide communities. In order to understand the vulnerability of the region’s ecosystems to change, it is necessary to have reliable projections of future climate conditions. To address this need, researchers first examined past and present variations in climate and assessed the ability of climate models to effectively project future climate conditions for the region. Second,...
thumbnail
Problem The discharge of freshwater and associated loading of nutrients and other dissolved constituents from the Long Island aquifer system to surrounding estuaries and their tributaries are increasingly recognized as critical factors in the health of these ecosystems. However, further work is needed to scientifically characterize these factors and present them to the public in an appropriate manner. Many organizations have undertaken assessments of this discharge and loading for discrete groundwater source areas and (or) receiving surface waters, applying a variety of techniques and assumptions. In part, this is because there is no delineation of recharge areas to the island’s groundwater-fed streams and estuaries...
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Basin & Hydrogeologic Characterization, Basin & Hydrogeologic Characterization, Climate Change, Climate Research and Development, ClimateChange, All tags...
thumbnail
BACKGROUND Long Island Sound has 600 miles of coastline and there are over 23 million people living within 50 miles of its shores. In response to water-quality issues and nitrogen pollution in the Sound, Congress created the Long Island Sound Study (LISS) in 1985. LISS is a partnership of federal, state, and local government agencies, private organizations and educational institutions working together to restore and protect the Sound. The USGS New England and New York Water Science Centers are partners in the LISS. These organizations also have historical and ongoing work with other partners in the LISS study region. Although historically the focus of LISS has been on water quality issues, a “Sustainable and Resilient...
thumbnail
The Appalachian Trail (AT), a 14-state footpath from Maine to Georgia, is a unit of the National Park Service that is cooperatively managed and maintained by the National Park Service (NPS), the Appalachian Trail Conservancy, AT Club volunteers, the USDA Forest Service, and other public land-management agencies. Upper elevation and ridge-top ecosystems, which comprise much of the trail corridor, have been impacted by and remain extremely sensitive to acidic deposition. Ridgetop soils that are often low in calcium make the ecosystems of the AT more sensitive to acidic deposition than other ecosystems. Furthermore, upper elevations tend to receive the highest levels of deposition. In areas along the AT, such...
thumbnail
FY2014Although the future of sage grouse depends on the future of sagebrush, we have limited ability to anticipate impacts of climate change on sagebrush populations. Current efforts to forecast sagebrush habitat typically rely on species distribution models (SDMs), which suffer from a variety of well-known weaknesses. However, by integrating SDMs with complementary research approaches, such as historical data analysis and mechanistic models, we can provide increased confidence in projections of habitat change. Our goal is to forecast the effect of climate change on the distribution and abundance of big sagebrush in order to inform conservation planning, and sage grouse management in particular, across the Intermountain...
thumbnail
Pacific Islands CASC engages in a variety of science co-production activities across the region with the goal of developing usable science with resource managers to help them better integrate adaptation strategies for fish, wildlife, water, land, and people into their decision making and planning. Our flagship program for knowledge co-production is the Manager Climate Corps. MCC was developed at the PI-CASC consortium member institution, the University of Hawaiʻi at Hilo, to support and build connections between natural and cultural resource managers, researchers, and graduate students on Hawaiʻi Island through in-person networking opportunities and to promote the benefits of collaborative, stakeholder-driven research...
thumbnail
Mosquito-borne disease is the biggest threat to Hawai‘i’s remaining native forest birds, of which more than half are threatened or endangered. Currently, disease-carrying mosquitoes are unable to move into colder high-elevation forests, but as the islands warm due to climate change, mosquitoes are steadily moving into the last native bird strongholds. Mosquito suppression efforts are planned for three Hawaiian Islands, however, there is currently no monitoring program to assess the effectiveness of those efforts. To address this pressing need, this project will develop new monitoring tools and protocols to provide managers with information about changes in bird and mosquito numbers that are related to climate change...
thumbnail
Ducks and other waterfowl in the U.S. are valued and enjoyed by millions of birdwatchers, artists, photographers and citizens for their beauty and appeal. Waterfowl also provide game for hunters throughout the country and act as an important source of revenue for states and local communities. Loss of habitat and migration corridors due to land use changes and changes in climate threaten these birds, however more scientific information is needed to understand these processes. This project used available annual surveys of duck counts, along with data on the location and availability of ponds and temperature and precipitation patterns, to model where across the continental landscape waterfowl were present and if their...
thumbnail
Haleakalā National Park (HNP) and the surrounding landscape spans many different land cover types, some of which are undergoing vegetation changes that can reduce the amount of water that infiltrates into soil. Decreased soil infiltration can lead to the erosion of terrestrial habitats, increases in the amount of sediment entering aquatic habitats, and flooding of downstream areas as runoff increases after storms. Currently, HNP managers are attempting to control runoff and erosion to avoid loss and damage within park boundaries and parks located downstream. Managers in HNP have expressed a need for information on current and future runoff and erosion risk to help prioritize management within the park and other...
thumbnail
American Samoa is vulnerable to sea-level rise in part due to the steep terrain of its islands. This terrain requires the majority of the islands’ villages and infrastructure to be located along thin strips of coastal land. The situation is worsened by the recently recognized rapid sinking of the islands, which was triggered by the 2009 Samoa earthquake and is predicted to last for decades. This subsidence is estimated to lead to roughly twice as much sea-level rise by 2060 as what is already predicted from climate change alone. As a result, the timeline of coastal impacts in American Samoa will be decades ahead of similar island communities in the Pacific. Despite this urgency, decision-makers in the region lack...
thumbnail
The Intergovernmental Panel on Climate Change reports that low-lying atolls (ring-shaped islands or island chains made of coral) in the Pacific Ocean are extremely vulnerable to high tide events (“king tides”), storm surge, tsunamis, and sea-level rise. The Republic of the Marshall Islands (RMI) spreads over 29 atolls and has a population of over 50,000 people with homes and communities that may be threatened by these climate change-related events. Policy makers, planners, and others within RMI are faced with decisions about how to prepare for the future and need scientific data and information about the vulnerability of Pacific Islands to potential climate change impacts like sea-level rise. Topographic and bathymetric...
thumbnail
Freshwater is a critical driver for island ecosystems. In Hawaiʻi, though rainfall intensity has increased, total rainfall has been on the decline for the last two decades and, as a result, streamflow has also been reduced. The changes in dynamic patterns of streamflow could result in impacts to river, estuarine, and coastal habitats. In turn, these changes also affect the nine native Hawaiian aquatic species found in these habitats at different stages of their amphidromous life cycle (in which they migrate from fresh to salt water or vice versa). To examine how changes in streamflow regime have impacted habitat quality for native migratory aquatic species, an ongoing project has been examining statewide long-term...
thumbnail
Ecosystems such as coral reefs and mangroves provide an effective first line of defense against coastal hazards and represent a promising nature-based solution to adapt to sea-level rise. In many areas, coral reefs cause waves to break and lose energy, allowing for sediment to accumulate on the inshore portion of reef flats (i.e. the shallowest, flattest part of a reef) and mangroves to establish. Mangroves cause further attenuation (i.e. energy loss) waves and storm surge as water moves through roots and trunks of the trees. Together, these ecosystems provide valuable protection from coastal flooding, but is unclear how this protection may be affected by sea-level rise. An assessment of future sea-level rise vulnerability...
thumbnail
Agriculture and agroforestry (tree cultivation) are important activities for the Marshall Islands and other small islands to ensure food security and human health. The Marshallese have a long tradition of interplanting food-producing trees such as coconuts, breadfruit, and pandanus with bananas and root and vegetable crops. Locally grown food crops support community self-sufficiency, promote good nutrition, and can also serve as windbreaks and stabilize shorelines to lessen storm damage and erosion. However, climate change is posing serious challenges for growers, as they struggle to adapt to climate impacts including saltwater intrusion, changing precipitation and temperature patterns, and the spread of invasive...
thumbnail
The conditions of coral reefs in the Hawaiian Islands are predicted to decline significantly from climate change over the next 100 years. To better prepare for the impacts of climate change on Hawaiian reefs, the research team uses a system of models to simulate ocean waves and circulation, rainfall and storm run-off, and coral reef community dynamics through the year 2100. These models will identify reef areas that are either vulnerable or resilient to the many stressors that the future may hold for reefs. The team’s hope is that this work can identify areas that might benefit from management actions to minimize local stressors such as land-based pollution. Through a collaborative partnership with state and federal...


map background search result map search result map Mapping Fresh, Intermediate, Brackish and Saline Marshes in the North Central Gulf of Mexico Coast to Inform Future Projections Understanding the Links between Climate and Waterbirds Across North America Understanding Extreme Climate Events in the North Central U.S. Projections of Future Coral Reef Communities in DOI-Managed Coastal Areas in the Hawaiian Islands Capacity Building in the North-Central U.S.: Tribal Engagement, Climate Training, and PhenoCam Deployment Developing an Agroforestry Dashboard for the Marshall Islands Appalachian Trail MEGA-Transect Atmospheric Deposition Effects Study Comprehensive Delineation of Groundwater Source Areas and Times-of-travel to Long Island Streams and Estuaries Collecting Elevation Data to Understand Climate Change Effects in the Marshall Islands Wildfire Probability Mapping Based on Regional Soil Moisture Models Forecasting Changes in Sagebrush Distribution and Abundance Under Climate Change: Integration of Spatial, Temporal, and Mechanistic Models Identifying the Risk of Runoff and Erosion in Hawaiʻi’s National Parks Strategies for Reducing the Vulnerability of Grassland Birds to Climate Change within the Central Flyway Sea-Level Rise Viewer for American Samoa: A Co-Developed Visualization and Planning Tool Connecting Ecosystems from Mountains to the Sea in a Changing Climate Science Co-Production The Impact of Sea-Level Rise on Coral Reef and Mangrove Interactions and the Resulting Coastal Flooding Hazards Assessment of compound flood risk from the combined effects of sea level rise on storm surge,  tidal and groundwater flooding, and stormwater Crafting Ecological Scenarios to Implement the Resist-Accept-Direct (RAD) Framework Advancing Wildlife Monitoring to Improve Management of Endangered Hawaiian Birds in a Changing Climate Collecting Elevation Data to Understand Climate Change Effects in the Marshall Islands Comprehensive Delineation of Groundwater Source Areas and Times-of-travel to Long Island Streams and Estuaries Assessment of compound flood risk from the combined effects of sea level rise on storm surge,  tidal and groundwater flooding, and stormwater The Impact of Sea-Level Rise on Coral Reef and Mangrove Interactions and the Resulting Coastal Flooding Hazards Sea-Level Rise Viewer for American Samoa: A Co-Developed Visualization and Planning Tool Mapping Fresh, Intermediate, Brackish and Saline Marshes in the North Central Gulf of Mexico Coast to Inform Future Projections Projections of Future Coral Reef Communities in DOI-Managed Coastal Areas in the Hawaiian Islands Advancing Wildlife Monitoring to Improve Management of Endangered Hawaiian Birds in a Changing Climate Developing an Agroforestry Dashboard for the Marshall Islands Wildfire Probability Mapping Based on Regional Soil Moisture Models Identifying the Risk of Runoff and Erosion in Hawaiʻi’s National Parks Forecasting Changes in Sagebrush Distribution and Abundance Under Climate Change: Integration of Spatial, Temporal, and Mechanistic Models Appalachian Trail MEGA-Transect Atmospheric Deposition Effects Study Understanding Extreme Climate Events in the North Central U.S. Capacity Building in the North-Central U.S.: Tribal Engagement, Climate Training, and PhenoCam Deployment Crafting Ecological Scenarios to Implement the Resist-Accept-Direct (RAD) Framework Strategies for Reducing the Vulnerability of Grassland Birds to Climate Change within the Central Flyway Understanding the Links between Climate and Waterbirds Across North America Connecting Ecosystems from Mountains to the Sea in a Changing Climate Science Co-Production