Skip to main content
Advanced Search

Filters: Categories: Publication (X) > partyWithName: Harding, Benjamin L (X)

6 results (70ms)   

View Results as: JSON ATOM CSV
thumbnail
This study examined the disposition of streamflow increases that could be created by vegetation management on forest land along the upper reaches of the Colorado River. A network optimization model was used to simulate water flow, storage, consumptive use, and loss within the entire Colorado River Basin with and without the flow increases, according to various scenarios incorporating both current and future consumptive use levels as well as existing and potential institutional constraints. Results indicate that very little of the flow increases would be consumptively used at current use levels, or even at future use levels, if water allocation institutions remain unchanged. Given future use levels and economically...
As multicentury records of natural hydrologic variability, tree ring reconstructions of streamflow have proven valuable in water resources planning and management. All previous reconstructions have used parametric methods, most often regression, to develop a model relating a set of tree ring data to a target hydrology. In this paper, we present the first development and application of a K nearest neighbor (KNN) nonparametric method to reconstruct naturalized annual streamflow ensembles from tree ring chronology data in the Upper Colorado River Basin region. The method is developed using tree ring chronologies from the period 1400?2005 and naturalized streamflow from the period 1906?2005 at the important Lees Ferry,...
The impacts of a severe sustained drought on Colorado River system water resources were investigated by simulating the physical and institutional constraints within the Colorado River Basin and testing the response of the system to different hydrologic scenarios. Simulations using Hydrosphere's Colorado River Model compared a 38-year severe sustained drought derived from 500 years of reconstructed streamfiows for the Colorado River basin with a 38-year streamfiow trace extracted from the recent historic record. The impacts of the severe drought on streamfiows, water allocation, storage, hydropower generation, and salinity were assessed. Estimated deliveries to consumptive uses in the Upper Basin states of Colorado,...
We evaluated the effects of institutional responses developed for coping with a severe sustained drought (SSD) in the Colorado River Basin on selected system variables using a SSD inflow hydrology derived from the drought which occurred in the Colorado River basin from 1579-1616. Institutional responses considered are reverse equalization, salinity reduction, minimum flow requirements, and temporary suspension of the delivery obligation of the Colorado River Compact. Selected system variables (reservoir contents, streamflows, consumptive uses, salinity, and power generation) from scenarios incorporating the drought-coping responses were compared to those from Baseline conditions using the current operating criteria....
The marginal economic value of streamflow leaving forested areas in the Colorado River Basin was estimated by determining the impact on water use of a small change in streamflow and then applying economic value estimates to the water use changes. The effect on water use of a change in streamflow was estimated with a network flow model that simulated salinity levels and the routing of flow to consumptive uses and hydroelectric dams throughout the Basin. The results show that, under current water management institutions, the marginal value of streamflow in the Colorado River Basin is largely determined by nonconsumptive water uses, principally energy production, rather than by consumptive agricultural or municipal...
This paper presents a summary of the findings and recommendations of the studies of severe, sustained drought reported in this special issue. The management facilities and institutions were found to be effective in protecting consumptive water users against drought, but much less effective in protecting nonconsumptive uses. Changes in intrastate water management were found to be effective in reducing the monetary value of damages, through reallocating shortages to low-valued uses, while only water banking and water marketing, among the possible interstate rule changes, were similarly effective. Players representing the basin states and the federal government in three gaming experiments were unable to agree upon...


    map background search result map search result map Consumptive use of streamflow increases in the Colorado River basin Consumptive use of streamflow increases in the Colorado River basin