Skip to main content
Advanced Search

Filters: Types: Map Service (X) > Types: Shapefile (X) > partyWithName: U.S. Geological Survey (X) > partyWithName: Emily A Himmelstoss (X)

Folder: ROOT ( Show direct descendants )

19 results (17ms)   

Location

Folder
ROOT
View Results as: JSON ATOM CSV
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Baseline, CMGP, California, CenCal, Central California, All tags...
thumbnail
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States' coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the USGS Digital Shoreline Analysis System (DSAS), version 5.1 software to calculate rates of change. Keeping a record of historical shoreline positions is an effective method to monitor change over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable to change. This data release, and other associated...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the USGS Digital Shoreline Analysis System (DSAS), version 5.1 software to calculate rates of change. Keeping a record of historical shoreline positions is an effective method to monitor change over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable to change. This data release, and other associated...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Baseline, CMGP, California, CenCal, Central California, All tags...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Baseline, CMGP, California, CenCal, Central California, All tags...
thumbnail
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the USGS Digital Shoreline Analysis System (DSAS), version 5.1 software to calculate rates of change. Keeping a record of historical shoreline positions is an effective method to monitor change over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable to change. This data release, and other associated...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Atlantic Coast, CMGP, Caribbean, Coastal Research and Planning Institute of Puerto Rico, Coastal and Marine Geology Program, All tags...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the USGS Digital Shoreline Analysis System (DSAS), version 5.1 software to calculate rates of change. Keeping a record of historical shoreline positions is an effective method to monitor change over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable to change. This data release, and other associated...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the USGS Digital Shoreline Analysis System (DSAS), version 5.1 software to calculate rates of change. Keeping a record of historical shoreline positions is an effective method to monitor change over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable to change. This data release, and other associated...
thumbnail
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the USGS Digital Shoreline Analysis System (DSAS), version 5.1 software to calculate rates of change. Keeping a record of historical shoreline positions is an effective method to monitor change over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable to change. This data release, and other associated...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Accretion, Atlantic Coast, CMGP, Caribbean, Coastal Research and Planning Institute of Puerto Rico, All tags...
thumbnail
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the USGS Digital Shoreline Analysis System (DSAS), version 5.1 software to calculate rates of change. Keeping a record of historical shoreline positions is an effective method to monitor change over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable to change. This data release, and other associated...


    map background search result map search result map Shorelines for Vieques, Culebra, and the main island of Puerto Rico from the 1900s to 2018 (ver. 2.0, March 2023) Baseline for the coast of Puerto Rico's main island generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 (ver. 2.0, March 2023) Shoreline change rates for the coast of Puerto Rico's main island calculated using the Digital Shoreline Analysis System version 5.1 (ver. 2.0, March 2023) Shoreline intersects for the coast of Puerto Rico's main island generated by the Digital Shoreline Analysis System version 5.1 (ver. 2.0, March 2023) Baseline for the islands of of Vieques and Culebra, Puerto Rico, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Shoreline change rates for the islands of Vieques and Culebra, Puerto Rico, calculated using the Digital Shoreline Analysis System version 5.1 Shoreline intersects for the islands of Vieques and Culebra, Puerto Rico, calculated using the Digital Shoreline Analysis System version 5.1 Baseline for the Central California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Intersects for the Central California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Shorelines of the Central California coastal region (1852-2016) used in shoreline change analysis Long-term shoreline change rates for the Central California coastal region using the Digital Shoreline Analysis System version 5.0 Baseline for the Northern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Intersects for the Northern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Shorelines of the Northern California coastal region (1854-2016) used in shoreline change analysis Long-term shoreline change rates for the Northern California coastal region using the Digital Shoreline Analysis System version 5.0 Baseline for the Southern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Intersects for the Southern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Shorelines of the Southern California coastal region (1852-2016) used in shoreline change analysis Long-term shoreline change rates for the Southern California coastal region using the Digital Shoreline Analysis System version 5.0 Shoreline intersects for the islands of Vieques and Culebra, Puerto Rico, calculated using the Digital Shoreline Analysis System version 5.1 Shoreline change rates for the islands of Vieques and Culebra, Puerto Rico, calculated using the Digital Shoreline Analysis System version 5.1 Baseline for the islands of of Vieques and Culebra, Puerto Rico, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Baseline for the coast of Puerto Rico's main island generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 (ver. 2.0, March 2023) Shoreline change rates for the coast of Puerto Rico's main island calculated using the Digital Shoreline Analysis System version 5.1 (ver. 2.0, March 2023) Shoreline intersects for the coast of Puerto Rico's main island generated by the Digital Shoreline Analysis System version 5.1 (ver. 2.0, March 2023) Shorelines for Vieques, Culebra, and the main island of Puerto Rico from the 1900s to 2018 (ver. 2.0, March 2023) Baseline for the Northern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Intersects for the Northern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Long-term shoreline change rates for the Northern California coastal region using the Digital Shoreline Analysis System version 5.0 Shorelines of the Northern California coastal region (1854-2016) used in shoreline change analysis Intersects for the Southern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Long-term shoreline change rates for the Southern California coastal region using the Digital Shoreline Analysis System version 5.0 Shorelines of the Southern California coastal region (1852-2016) used in shoreline change analysis Baseline for the Southern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Intersects for the Central California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Long-term shoreline change rates for the Central California coastal region using the Digital Shoreline Analysis System version 5.0 Baseline for the Central California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Shorelines of the Central California coastal region (1852-2016) used in shoreline change analysis