Skip to main content
Advanced Search

Filters: partyWithName: Pacific Coastal and Marine Science Center (X)

966 results (17ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: see below under 'Related Resources' or 'Child Items' for links to specific Phase 2 Channel Islands data files. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: see below under 'Related Resources' or 'Child Items' for links to specific Phase 2 Santa Barbara County data files. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
The U.S. Geological Survey (USGS) collected high-resolution multichannel sparker, minisparker and chirp seismic-reflection data in November 2014, from offshore Catalina and Santa Cruz basins. The survey was designed to image faults and folds associated with movement on the faults in offshore southern California, including the Catalina, Catalina Ridge, San Clemente, and San Diego Trough faults. Data were collected aboard the Scripps Institution of Oceanography R/V Robert Gordon Sproul. Subbottom acoustic penetration spans several hundred meters and is variable by location. This data release contains processed digital SEG-Y. The seismic-reflection profiles of bedrock, sediment deposits and tectonic structure provide...
Categories: Data, Data Release - Revised; Tags: Geophysics
thumbnail
An unmanned aerial system (UAS) was used to acquire high-resolution imagery of the intertidal zone at Puget Creek and Dickman Mill Park in Tacoma, Washington on June 3, 2019. This imagery was processed using structure-from-motion (SfM) photogrammetric techniques to derive high-resolution digital surface models (DSM), orthomosaic imagery, and topographic point clouds. In order to maximize the extent of the subaerially exposed area, the survey was timed to coincide with a spring low tide occurring at approximately 18:36 Universal Coordinated Time (UTC) (11:36 Pacific Daylight Time (PDT)), with an observed water level of -1.47 meters relative to the NAVD88 vertical datum at the Tacoma NOAA tide station (station ID...
thumbnail
High-resolution multichannel minisparker and chirp seismic-reflection data were collected in August of 2015 to explore marine geologic hazards of inland waterways of southeastern Alaska. Sub-bottom profiles were acquired in the inland waters between Glacier Bay and Juneau, including Cross Sound and Chatham Strait. High-resolution seismic-reflection profiles were acquired to assess evidence for active seabed faulting and submarine landslide hazards. The data were collected aboard the U.S. Geological Survey R/V Alaskan Gyre. Chirp data were acquired using a tow-fish Edgetech 512 chirp subbottom profiler, and multichannel (mcs) minisparker data were acquired using a 500-Joule minisparker source and a 48-channel Geometrics...
Categories: Data; Tags: Geophysics
thumbnail
This portion of the data release presents a digital surface model (DSM) and hillshade of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta. The DSM has a resolution of 10 centimeters per-pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an Unmanned Aerial System (UAS) on 2018-10-23. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise in the original imagery have not been removed. The raw imagery used to create this DSM was...
thumbnail
This portion of the data release presents the raw aerial imagery collected during the Unmanned Aerial System (UAS) survey of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta on 2018-10-23. The imagery was acquired using two Department of Interior owned 3DR Solo quadcopters fitted with Ricoh GR II digital cameras featuring global shutters. The cameras were mounted using a fixed mount on the bottom of the UAS and oriented in a roughly nadir orientation. The UAS were flown on pre-programmed autonomous flight lines at an approximate altitude of 120 meters above-ground-level, resulting in a nominal ground-sample-distance (GSD) of 3.2 centimeters per-pixel. The flight...
thumbnail
Bathymetric change grids covering the periods of time from 1934 to 2011, from 2011 to 2018, and from 1934 to 2018 are presented. The grids cover a portion of the Mokelumne River, California, starting at its terminus at the San Joaquin River and moving upriver to the confluences of the north and south branches of the Mokelumne. Positive grid values indicate accretion, or a shallowing of the surface bathymetric surface, and negative grid values indicate erosion, or a deepening of the bathymetric surface. Bathymetry data sources include the U.S. Geological Survey, California Department of Water Resources, and NOAA's National Ocean Service.
thumbnail
Bathymetric change grids covering the periods of time from 1992 to 1998 and from 1994 to 2004 are presented. The grids cover a portion of the Sacramento River near Rio Vista, California, extending partially upstream on Cache and Steamboat sloughs by the Ryer Island Ferry, as well as continuing up the Sacramento River towards Isleton. Positive grid values indicate accretion, or a shallowing of the surface bathymetric surface, and negative grid values indicate erosion, or a deepening of the bathymetric surface. Bathymetry data sources include the U.S. Army Corps of Engineers, California Department of Water Resources, and NOAA�s National Ocean Service.
thumbnail
This part of DS 781 presents data for the transgressive contours of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "TransgressiveContours_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between 2010 and 2012, and supplemented with geologic structure (fault) information following the methodology of Wong (2012). Water depths determined from bathymetry data were added to the sediment thickness data to...
thumbnail
This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2018-12-02. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original imagery have not been removed. However, in unvegetated areas such as reservoir shorelines and deltas, the DSM is equivalent to a DEM because it represents the ground surface elevation. The raw imagery used to create...


map background search result map search result map CoSMoS 3.0 Phase 2 flood hazard projections: 100-year storm in San Diego County CoSMoS 3.0 Phase 2 wave-hazard projections: 1-year storm in San Diego County CoSMoS v3.0 Phase 2 - Santa Barbara County CoSMoS 3.0 Phase 2 ocean-currents hazards: 1-year storm in Santa Barbara County CoSMoS v3.0 Phase 2 - Channel Islands CoSMoS 3.0 Phase 2 ocean-currents hazards: 1-year storm in Ventura County CoSMoS 3.0 Phase 2 water level projections: 20-year storm in Orange County CoSMoS 3.0 Phase 2 water level projections: average conditions in Orange County CoSMoS 3.0 Phase 2 ocean-currents hazards: 20-year storm in Orange County CoSMoS v3.0 water level projections: 100-year storm in Channel Islands Bathymetric change analyses of the southernmost portion of the Mokelumne River, California, from 1934 to 2018 Bathymetric change analyses of the Sacramento River near Rio Vista, California, and the junction of Cache and Steamboat sloughs, from 1992 to 2004 Transgressive Contours--Punta Gorda to Point Arena, California Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2018-12-02 Digital surface model (DSM) for the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23 Aerial imagery from UAS survey of the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23 Polycyclic aromatic hydrocarbons (PAHs) in the San Lorenzo River, Santa Cruz, California, USA, from 2015 to 2016 Aerial imagery from UAS survey of the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23 Digital surface model (DSM) for the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23 Bathymetric change analyses of the southernmost portion of the Mokelumne River, California, from 1934 to 2018 Bathymetric change analyses of the Sacramento River near Rio Vista, California, and the junction of Cache and Steamboat sloughs, from 1992 to 2004 Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2018-12-02 CoSMoS 3.0 Phase 2 ocean-currents hazards: 1-year storm in Ventura County CoSMoS v3.0 Phase 2 - Santa Barbara County CoSMoS 3.0 Phase 2 ocean-currents hazards: 1-year storm in Santa Barbara County CoSMoS 3.0 Phase 2 water level projections: 20-year storm in Orange County CoSMoS 3.0 Phase 2 water level projections: average conditions in Orange County CoSMoS 3.0 Phase 2 ocean-currents hazards: 20-year storm in Orange County Transgressive Contours--Punta Gorda to Point Arena, California CoSMoS 3.0 Phase 2 flood hazard projections: 100-year storm in San Diego County CoSMoS 3.0 Phase 2 wave-hazard projections: 1-year storm in San Diego County CoSMoS v3.0 Phase 2 - Channel Islands CoSMoS v3.0 water level projections: 100-year storm in Channel Islands