Skip to main content
Advanced Search

Filters: partyWithName: U.S. Geological Survey (X) > partyWithName: Camille L Stagg (X)

22 results (13ms)   

Filters
Date Range
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset provides maps of biomass carbon (C) in gC/m2 of coastal herbaceous wetlands at a resolution of 30 m across the conterminous United States (CONUS) for 2015.
thumbnail
In recent decades the encroachment of woody mangrove species into herbaceous marshes has been documented along the U.S. northern Gulf of Mexico coast. These species shifts have been attributed primarily to rising sea levels and warming winter temperatures, but the role of elevated atmospheric carbon dioxide (CO2) and water availability may become more prominent drivers of species interactions under future climate conditions. In this greenhouse study we examined the effects of CO2 concentration (ambient, elevated) and water regime (drought, saturated, flooded) on early growth of the mangrove species Avicennia germinans and Spartina alterniflora, a herbaceous grass.
thumbnail
Above- and belowground production in coastal wetlands are important contributors to carbon accumulation and ecosystem sustainability. As sea level rises, we can expect shifts to more salt-tolerant communities, which may alter these ecosystem functions and services. Although the direct influence of salinity on species-level primary production has been documented, we lack an understanding of the landscape-level response of coastal wetlands to increasing salinity. What are the indirect effects of sea-level rise, i.e. how does primary production vary across a landscape gradient of increasing salinity that incorporates changes in wetland type? We measured above- and belowground production in four wetland types that span...
thumbnail
Above- and belowground production in coastal wetlands are important contributors to carbon accumulation and ecosystem sustainability. As sea level rises, we can expect shifts to more salt-tolerant communities, which may alter these ecosystem functions and services. Although the direct influence of salinity on species-level primary production has been documented, we lack an understanding of the landscape-level response of coastal wetlands to increasing salinity. What are the indirect effects of sea-level rise, i.e. how does primary production vary across a landscape gradient of increasing salinity that incorporates changes in wetland type? We measured above- and belowground production in four wetland types that span...
thumbnail
Above- and belowground production in coastal wetlands are important contributors to carbon accumulation and ecosystem sustainability. As sea level rises, we can expect shifts to more salt-tolerant communities, which may alter these ecosystem functions and services. Although the direct influence of salinity on species-level primary production has been documented, we lack an understanding of the landscape-level response of coastal wetlands to increasing salinity. What are the indirect effects of sea-level rise, i.e. how does primary production vary across a landscape gradient of increasing salinity that incorporates changes in wetland type? We measured above- and belowground production in four wetland types that span...
thumbnail
The northern Gulf of Mexico coast spans two major climate gradients and represents an excellent natural laboratory for developing climate-influenced ecological models. In this project, we used these zones of remarkable transition to develop macroclimate-based models for quantifying the regional responses of coastal wetland ecosystems to climate variation. In addition to providing important fish and wildlife habitat and supporting coastal food webs, these coastal wetlands provide many ecosystem goods and services including clean water, stable coastlines, food, recreational opportunities, and stored carbon. Our objective was to examine and forecast the effects of macroclimatic drivers on wetland ecosystem structure...
thumbnail
The northern Gulf of Mexico coast spans two major climate gradients and represents an excellent natural laboratory for developing climate-influenced ecological models. In this project, we used these zones of remarkable transition to develop macroclimate-based models for quantifying the regional responses of coastal wetland ecosystems to climate variation. In addition to providing important fish and wildlife habitat and supporting coastal food webs, these coastal wetlands provide many ecosystem goods and services including clean water, stable coastlines, food, recreational opportunities, and stored carbon. Our objective was to examine and forecast the effects of macroclimatic drivers on wetland ecosystem structure...
thumbnail
Model generated soil pore water salinity (psu) values under scenarios of drought and normal conditions at Tidal Freshwater Forested Wetlands (TFFW) sites along the Waccamaw River and Savannah River in the Southeastern United States.
thumbnail
Short-term carbon accumulation rates were examined by collecting 10-cm deep soil cores at 24 sites located in marshes spanning the salinity gradient in coastal Louisiana. Percent moisture, bulk density, total carbon content, and the short-term accretion rates obtained with feldspar horizon markers were measured to determine total carbon accumulation and storage rates.
thumbnail
Product Description: This dataset provides maps of peak biomass carbon stock (C) in gC/m2 and net primary productivity (NPP) in gC/m2/yr of coastal herbaceous wetlands at a resolution of 30 m across the conterminous United States (CONUS) for 2015. Aboveground, belowground, and total peak biomass C and NPP are provided for tidal herbaceous wetlands. Data is presented for 1. all herbaceous/emergent marshes, 2. palustrine emergent marshes and 3. estuarine emergent marshes. Background: Spatial assessments of greenhouse gas emissions and carbon sequestration in natural ecosystems are necessary to develop climate mitigation strategies. Regional and national-level assessments of carbon sequestration require high-resolution...
thumbnail
This dataset provides the water content, bulk density, carbon concentrations, nitrogen concentrations, and carbon content of all fourteen cores sampled in coastal Louisiana (CRMS 0224) in October of 2019. Each sample is identified by a unique identifier that corresponds to each site by depth increment combination. The pond age range associated with each site is provided. The depth increment associated with each sample is provided.
thumbnail
Continuous water quality sensor data were collected at USGS 292939089544400 Wilkinson Bayou cutoff north of Wilkinson Bay, LA gage. Field water-quality measurements were collected using a YSI EXO2 water-quality sonde equipped with a data logger to capture hourly data using sensors for measuring water temperature, specific conductance, salinity, pH, oxidation and reduction potential (ORP), fluorescent dissolved organic matter (fDOM), and turbidity. The monitor was housed in an 8-inch diameter polyvinyl chloride (PVC) pipe attached to a temporary wooden structure near the gage. Measurements were collected from a fixed mid-depth point in the water column. All data were collected using U.S. Geological Survey (USGS)...
thumbnail
This data release includes belowground primary productivity, decomposition, and surface elevation change data from a two-year mesocosm experiment from 2012 to 2014. We conducted experimental greenhouse manipulations of atmospheric CO2 (double ambient CO2) and sediment deposition to simulate a land-falling hurricane under future climate conditions. Experimental greenhouse conditions mimicked a land-falling hurricane under projected future climate conditions by comparing atmospheric to double ambient CO2 and sediment deposition in four communities along a coastal wetland landscape gradient in Louisiana, USA (tidal freshwater forested wetland, forest/marsh mix, marsh, and mudflat).
thumbnail
Coastal wetlands store more carbon than most ecosystems globally. However, little is known about the mechanisms that control the loss of organic matter in coastal wetlands at the landscape scale, and how sea-level rise will impact this important ecological function.
thumbnail
These datasets represent a revised national scale estimate of wetland soil carbon stock assessments by improving representation of soil organic carbon densities. This assessment is based on a three-step approach to harmonize survey and point-based data for predicting soil organic carbon density from percent organic carbon alone (or percent organic matter, with conversion), when reliable dry bulk density information is not available. Given issues with survey-level extrapolation of soil pedons into discontinuous hydric soils, quantile, segmented data analysis provides a more accurate spatially explicit soil organic carbon density product. These modeled data leverage spatial and statistical distributions of soil organic...
thumbnail
Site, field, and soil data collected from 14 sites along a chronosequence of wetland submergence on 15 – 17 October 2019 in a Louisiana salt marsh in Barataria Basin, part of the Mississippi River Deltaic Plain, along the northern Gulf of Mexico coast.
thumbnail
The northern Gulf of Mexico coast spans two major climate gradients and represents an excellent natural laboratory for developing climate-influenced ecological models. In this project, we used these zones of remarkable transition to develop macroclimate-based models for quantifying the regional responses of coastal wetland ecosystems to climate variation. In addition to providing important fish and wildlife habitat and supporting coastal food webs, these coastal wetlands provide many ecosystem goods and services including clean water, stable coastlines, food, recreational opportunities, and stored carbon. Our objective was to examine and forecast the effects of macroclimatic drivers on wetland ecosystem structure...
thumbnail
This dataset provides maps of net primary productivity (NPP) in gC/m2/yr of coastal herbaceous wetlands at a resolution of 30 m across the conterminous United States (CONUS) for 2015.
thumbnail
Mangrove forests are among the world’s most productive and carbon-rich ecosystems. In addition to providing important fish and wildlife habitat and supporting coastal food webs, these coastal wetlands provide many ecosystem goods and services including clean water, stable coastlines, food, recreational opportunities, and stored carbon. Despite a growing understanding of the factors controlling mangrove soil carbon stocks, there is a pressing need to advance understanding of the pace of peat development beneath maturing mangroves - especially in created and restored mangroves, which are often intended to compensate for ecosystem functions lost during mangrove conversion to other land uses. To better quantify the...
thumbnail
A biogeochemistry model was developed to examine plant gross primary productivity (GPP), net primary productivity (NPP), plant respiration, soil respiration, soil organic carbon sequestration rate and storage under scenarios of drought and normal conditions at Tidal Freshwater Forested Wetlands (TFFW) sites along the Waccamaw River and Savannah River in the Southeastern United States.


map background search result map search result map U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Vegetation Data Section 1 (2013-2014) U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Landscape and Climate Data (2013-2014) U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Soil Data (2013-2014) Organic matter decomposition across a coastal wetland landscape in Louisiana, U.S.A. (2014-2015) Primary production across a coastal wetland landscape in Louisiana, U.S.A. (2012-2014) Primary production across a coastal wetland landscape in Louisiana, U.S.A. above- and belowground primary production (2012-2014) data Primary production across a coastal wetland landscape in Louisiana, U.S.A. environmental data (2012-2014) Early growth interactions between a mangrove and an herbaceous salt marsh species are not affected by elevated CO2 or drought, Louisiana saltmarsh, 2015 Short term soil carbon data and accretion rates from four marsh types in Mississippi River Delta collected in 2015 Modeling soil pore water salinity response to drought in tidal freshwater forested wetlands Rapid peat development beneath maturing mangrove forests: quantifying ecosystem changes along a 25-year chronosequence of created coastal wetlands Spatiotemporal dynamics of soil carbon following coastal wetland loss at a Louisiana coastal salt marsh in the Mississippi River Deltaic Plain in 2019 Modeling impacts of drought-induced salinity intrusion on carbon fluxes and storage in tidal freshwater forested wetlands Above- and belowground biomass production, decomposition, and wetland elevation change in transitional coastal wetland communities exposed to elevated CO2 and sediment deposition: a mesocosm study from 2012 to 2014 Harmonizing wetland soil organic carbon datasets to improve spatial representation of 2011 soil carbon stocks in the conterminous United States Biomass Carbon Stock and Net Primary Productivity in Tidal Herbaceous Wetlands of the Conterminous United States High resolution water quality and dissolved carbon data from a coastal Louisiana salt marsh from 2019 to 2022 Plant, soil, and microbial characteristics of marsh collapse in Mississippi River Deltaic wetlands Peak Biomass Carbon in Tidal Herbaceous Wetlands of the Conterminous United States Net Primary Productivity in Tidal Herbaceous Wetlands of the Conterminous United States High resolution water quality and dissolved carbon data from a coastal Louisiana salt marsh from 2019 to 2022 Spatiotemporal dynamics of soil carbon following coastal wetland loss at a Louisiana coastal salt marsh in the Mississippi River Deltaic Plain in 2019 Plant, soil, and microbial characteristics of marsh collapse in Mississippi River Deltaic wetlands Rapid peat development beneath maturing mangrove forests: quantifying ecosystem changes along a 25-year chronosequence of created coastal wetlands Early growth interactions between a mangrove and an herbaceous salt marsh species are not affected by elevated CO2 or drought, Louisiana saltmarsh, 2015 Primary production across a coastal wetland landscape in Louisiana, U.S.A. (2012-2014) Primary production across a coastal wetland landscape in Louisiana, U.S.A. above- and belowground primary production (2012-2014) data Primary production across a coastal wetland landscape in Louisiana, U.S.A. environmental data (2012-2014) Organic matter decomposition across a coastal wetland landscape in Louisiana, U.S.A. (2014-2015) Short term soil carbon data and accretion rates from four marsh types in Mississippi River Delta collected in 2015 Modeling soil pore water salinity response to drought in tidal freshwater forested wetlands Modeling impacts of drought-induced salinity intrusion on carbon fluxes and storage in tidal freshwater forested wetlands U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Vegetation Data Section 1 (2013-2014) U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Soil Data (2013-2014) U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Landscape and Climate Data (2013-2014) Biomass Carbon Stock and Net Primary Productivity in Tidal Herbaceous Wetlands of the Conterminous United States Net Primary Productivity in Tidal Herbaceous Wetlands of the Conterminous United States Peak Biomass Carbon in Tidal Herbaceous Wetlands of the Conterminous United States Harmonizing wetland soil organic carbon datasets to improve spatial representation of 2011 soil carbon stocks in the conterminous United States