Skip to main content
Advanced Search

Filters: partyWithName: Kenneth S Rukstales (X) > partyWithName: Earthquake Hazards Program (X)

54 results (16ms)   

View Results as: JSON ATOM CSV
For background, please see the Parent Item. The Maximum Considered Earthquake Geometric Mean (MCEG) peak ground acceleration (PGA) values of the 2009 NEHRP Recommended Seismic Provisions and the 2010 ASCE/SEI 7 Standard are calculated from the data in the downloadable files below, via the following equations: PGA = min[ PGAUH , max( PGAD84th , 0.6 ) ] for the 2009 NEHRP Recommended Seismic Provisions; PGA = min[ PGAUH , max( PGAD84th , 0.5 ) ] for the 2010 ASCE/SEI 7 Standard; where PGAUH = uniform-hazard peak ground acceleration; PGAD84th = 84th-percentile peak ground acceleration; and 0.6 or 0.5 = deterministic lower limit peak ground acceleration. These peak ground...
Categories: Data
thumbnail
A comparison of the 2017 USGS South America seismic hazard model with the Global Seismic Hazard Assessment Program (GSHAP) model and the 2010 USGS preliminary model was made to see how the models differ. The comparisons were made as ratios of PGA at 10% probability of exceedance in 50 years. Ratio maps of each comparison are included as a geo-referenced tiff (GeoTIFF).
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for peak ground acceleration with a 10 percent probability of exceedance in 50 years.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 0.2-second period with a 50 percent probability of exceedance in 50 years.
thumbnail
Seismic hazard curves were determined using the USGS seismic hazard model for South America. The curves represent the annual rate of exceedance versus peak horizontal acceleration or horizontal spectral response acceleration for 0.2- or 1.0-second periods, for a grid of points with a spacing of 0.1 degrees in latitude and longitude. The hazard curves were used to prepare maps and gridded data that portray peak horizontal acceleration and horizontal spectral response acceleration for 0.2- and 1.0-second periods with a 2%, 10%, and 50% probability of exceedance in 50 years, and a uniform site condition (Vs30) of 760 m/sec. MMI maps for 2%, 10%, and 50% probability of exceedance in 50 years were derived from PGA...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 1.0-second period with a 10 percent probability of exceedance in 50 years.
thumbnail
An updated, declustered seismicity catalog is assembled from several preexisting catalogs. The methodology developed by Mueller (2019) was used to convert original magnitudes to uniform moment magnitudes, delete duplicate events, delete non-tectonic events, and finally decluster the catalog.
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the 2010 USGS preliminary model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the gridded data for the 2010 PGA at 10% probability can be found in the zip archive that can be downloaded using a link on this page.
thumbnail
Maximum considered earthquake geometric mean peak ground acceleration maps (MCEG) are for assessment of the potential for liquefaction and soil strength loss, as well as for determination of lateral earth pressures in the design of basement and retaining walls. The maps are derived from the USGS seismic hazard maps in accordance with the site-specific ground-motion procedures of the NEHRP Recommended Seismic Provisions for New Building and Other Structures and the ASCE Minimum Design Loads for Buildings and Other Structures (also known as the ASCE 7 Standard; ASCE, 2016). The MCEG ground motions are taken as the lesser of probabilistic and deterministic values, as explained in the Provisions. The gridded probabilistic...
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the Global Seismic Hazard Assessment Program (GSHAP) model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the GSHAP data can be found here. Shedlock, K.M., Giardini, Domenico, Grünthal, Gottfried, and Zhang, Peizhan, 2000, The GSHAP Global Seismic Hazar Map, Sesimological Research Letters, 71, 679-686. https://doi.org/10.1785/gssrl.71.6.679
thumbnail
The crustal fault model accounts for earthquakes that occur on faults that have not ruptured recently, but have have been active in historic and prehistoric periods. Although hundreds of Quaternary faults have been mapped, only a few of these faults have been studied sufficiently to reach a consensus regarding rate of deformation that can be applied in this hazard assessment. Information regarding the seismogenic source geometry and seismogenic source behavior that is necessary to model each fault is included for each fault. Files that can be used as input to computer hazard code are included.
The Maximum Considered Earthquake Geometric Mean (MCEG) peak ground acceleration (PGA) values of the 2015 NEHRP Recommended Seismic Provisions and the 2016 ASCE/SEI 7 Standard are calculated from the data in the downloadable files below, via the following equation: PGA = min[ PGAUH , max( PGAD84th , 0.5 ) ] where PGAUH = uniform-hazard peak ground acceleration; PGAD84th = 84th-percentile peak ground acceleration. These peak ground accelerations are each for the geometric mean of two horizontal components and a site shear wave velocity (VS30) of 760 m/s. For more information, see the "Related External Resources" below. Note: The USGS Seismic Design Web Services first spatially interpolate...
Categories: Data
thumbnail
Disaggregation of the seismic hazard for peak ground acceleration having a 2 percent probability of exceedance in 50 years is given for several major cities in South America. These disaggregation plots and reports show the relative contribution of individual sources to the seismic hazard (aggregated by magnitude and distance).
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 50 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 0.2-second period with a 2 percent probability of exceedance in 50 years.
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. It represents the annual rate of exceedance versus 0.2-second spectral response acceleration.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for peak ground acceleration with a 2 percent probability of exceedance in 50 years.
thumbnail
The subduction model accounts for large earthquakes (M 7–9.5) that occur on the subduction interface. The subduction zones along the northern and western coast of South America, the Panama deformation zones, and the Lesser Antilles subduction zone of the Caribbean are considered in the subduction model of this hazard assessment. The subduction interface of the Nazca plate beneath the western coast of South America has been separated into five zones, down to a depth of 50 km. The five zones are based on the locations of impinging subduction ridges, dimensions of large earthquakes, and fault complications. An alternative model for Chile (Medina et al., 2017) is applied to the Nazca subduction zones 3–5. This...
Based on the USGS probabilistic seismic hazard model for South America, earthquake ground motion "design" maps were prepared, using the same procedures used to prepare seismic design maps for the U.S. and its territorries. The design maps for the U.S. and its territories have been adopted by U.S. building codes and consist of two parts: 1) Risk-targeted maximum considered earthquake (MCER) spectral acceleration maps at periods of 0.2 and 1.0 seconds, and 2) maximum considered earthquake geometric mean (MCEG) PGA maps. Both types of maps are derived in accordance with the site_specific ground motion procedures of the NEHRP Recommended Seismic Provisions for New Buildings and Other Structures (BSSC, 2015) and...
The updated 2018 National Seismic Hazard Model includes new ground motion models, aleatory uncertainty, and soil amplification factors for the central and eastern U.S. and incorporates basin depths from local seismic velocity models in four western U.S. (WUS) urban areas. These additions allow us, for the first time, to calculate probabilistic seismic hazard curves for an expanded set of spectral periods (0.01 s to 10 s) and site classes (VS30 = 150 m/s to 1,500 m/s) for the conterminous U.S. (CONUS), as well as account for amplification of long-period ground motions in deep sedimentary basins in the Los Angeles, San Francisco Bay, Salt Lake City, and Seattle regions. Ground motion data for 2, 5, and 10 percent...


map background search result map search result map 2) Probabilistic seismic hazard maps and data for South America Peak ground acceleration with a 2% probability of exceedance in 50 years Peak ground acceleration with a 10% probability of exceedance in 50 years 0.2-second spectral response acceleration (5% of critical damping) with a 2% probability of exceedance in 50 years 1.0-second spectral response acceleration (5% of critical damping) with a 10% probability of exceedance in 50 years Crustal fault model Subduction model 3) Comparison with previous models Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model 0.2-second spectral response acceleration (5% of critical damping) with a 50% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years Data Release for Additional Period and Site Class Data for the 2018 National Seismic Hazard Model for the Conterminous United States (ver. 1.2, May 2021) Data Release for Additional Period and Site Class Data for the 2018 National Seismic Hazard Model for the Conterminous United States (ver. 1.2, May 2021) Crustal fault model Subduction model Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model 2) Probabilistic seismic hazard maps and data for South America 3) Comparison with previous models 1.0-second spectral response acceleration (5% of critical damping) with a 10% probability of exceedance in 50 years 0.2-second spectral response acceleration (5% of critical damping) with a 2% probability of exceedance in 50 years 0.2-second spectral response acceleration (5% of critical damping) with a 50% probability of exceedance in 50 years Peak ground acceleration with a 2% probability of exceedance in 50 years Peak ground acceleration with a 10% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years