Skip to main content
Advanced Search

Filters: Categories: Data (X) > partyWithName: U.S. Geological Survey (X) > partyWithName: Samantha K Oliver (X)

25 results (15ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Using predicted lake temperatures from uncalibrated, process-based models (PB0) and process-guided deep learning models (PGDL), this dataset summarized a collection of thermal metrics to characterize lake temperature impacts on fish habitat for 881 lakes. Included in the metrics are daily thermal optical habitat areas and a set of over 172 annual thermal metrics.
thumbnail
Water temperature estimates from multiple models were evaluated by comparing predictions to observed water temperatures. The performance metric of root-mean square error (in degrees C) is calculated for each lake and each model type, and matched values for predicted and observed temperatures are also included to support more specific error estimation methods (for example, calculating error in a particular month). Errors for the process-based model are compared to predictions as shared in Model Predictions data since these models were not calibrated. Errors for the process-guided deep learning models were calculated from validation folds and therefore differ from the comparisons to Model Predictions because those...
thumbnail
This dataset provides shapefile outlines of the 2,332 lakes that had temperature modeled as part of this study. The format is a shapefile for all lakes combined (.shp, .shx, .dbf, and .prj files). A csv file of lake metadata is included, which includes lake metadata and all features that were considered for the meta transfer model (not all meta features were used). This dataset is part of a larger data release of lake temperature model inputs and outputs for 2,332 lakes in the U.S. (https://doi.org/10.5066/P9I00WFR).
This data release component contains water temperature predictions in 118 river catchments across the U.S. Predictions are from the four models described by Rahmani et al. (2020): locally-fitted linear regression, LSTM-noQ, LSTM-obsQ, and LSTM-simQ.
thumbnail
This dataset provides shapefile outlines of the 881 lakes that had temperature modeled as part of this study. The format is a shapefile for all lakes combined (.shp, .shx, .dbf, and .prj files). A csv file of lake metadata is also included. This dataset is part of a larger data release of lake temperature model inputs and outputs for 881 lakes in the U.S. state of Minnesota (https://doi.org/10.5066/P9PPHJE2).
thumbnail
This data release component contains mean daily stream water temperature observations, retrieved from the USGS National Water Information System (NWIS) and used to train and validate all temperature models. The model training period was from 2010-10-01 to 2014-09-30, and the test period was from 2014-10-01 to 2016-09-30.
Categories: Data; Tags: AL, AR, AZ, Alabama, Arizona, All tags...
This item contains data and code used in experiments that produced the results for Sadler et. al (2022) (see below for full reference). We ran five experiments for the analysis, Experiment A, Experiment B, Experiment C, Experiment D, and Experiment AuxIn. Experiment A tested multi-task learning for predicting streamflow with 25 years of training data and using a different model for each of 101 sites. Experiment B tested multi-task learning for predicting streamflow with 25 years of training data and using a single model for all 101 sites. Experiment C tested multi-task learning for predicting streamflow with just 2 years of training data. Experiment D tested multi-task learning for predicting water temperature with...
thumbnail
This dataset includes model inputs including gridded weather data, a stream network distance matrix, stream reach attributes and metadata, and reservoir characteristics.
thumbnail
This dataset includes model inputs (specifically, meteorological inputs to the predictive models and flags for predicted ice-cover) and is part of a larger data release of lake temperature model inputs and outputs for 2,332 lakes in the U.S. states of North Dakota, South Dakota, Minnesota, Wisconsin, and Michigan (https://doi.org/10.5066/P9PPHJE2).
thumbnail
Multiple modeling frameworks were used to predict daily temperatures at 0.5m depth intervals for a set of diverse lakes in the U.S. states of South Dakota, North Dakota, Minnesota, Wisconsin, and Michigan. Process-Based (PB) models were configured and calibrated with training data to reduce root-mean squared error. Uncalibrated models used default configurations (PB0; see Winslow et al. 2016 for details) and no parameters were adjusted according to model fit with observations. Process-Guided Deep Learning (PGDL) models were deep learning models with an added physical constraint for energy conservation as a loss term. These models were pre-trained with uncalibrated Process-Based model outputs (PB0) before training...
thumbnail
This data release contains the forcings and outputs of 7-day ahead maximum water temperature forecasting models that made real-time predictions in the Delaware River Basin during 2021. The model is driven by weather forecasts and observed reservoir releases and produces maximum water temperature forecasts for the issue day (day 0) and 7 days into the future (days 1-7) at five sites. This data release captures the entire forecasting period that is reported in Zwart et al. 2022, and is an extension of a previous data release that contains all data needed to build these models but only extends to July 16, 2021 (Oliver et al. 2021). Additionally, this release contains a tidy version of the model predictions with paired...
thumbnail
This data release provides the predictions from stream temperature models described in Chen et al. 2021. Briefly, various deep learning and process-guided deep learning models were built to test improved performance of stream temperature predictions below reservoirs in the Delaware River Basin. The spatial extent of predictions was restricted to streams above the Delaware River at Lordville, NY, and includes the West Branch of the Delaware River below Cannonsville Reservoir and the East Branch of the Delaware River below Pepacton Reservoir. Various model architectures, training schemes, and data assimilation methods were used to generate the table and figures in Chen et a.l (2021) and predictions of each model are...
This data release component contains evaluation metrics used to assess the predictive performance of each stream temperature model. For further description, see the metric calculations in the supplement of Rahmani et al. (2020), equations S1-S7.
This data release component contains mean daily stream water temperature observations, retrieved from the USGS National Water Information System (NWIS) and used to train and validate all temperature models. The model training period was from 2010-10-01 to 2014-09-30, and the test period was from 2014-10-01 to 2016-09-30.
thumbnail
Observations related to water and thermal budgets in the Delaware River Basin. Data from reservoirs in the basin include reservoir characteristics (e.g., bathymetry), daily water levels, daily depth-resolved water temperature observations, and daily inflows, diversions, and releases. Data from streams in the basin include daily flow and temperature observations. Data were compiled from a variety of sources to cover the modeling period (1980-2021), including the National Water Inventory System, Water Quality Portal, EcoSHEDS stream water temperature database, ReaLSAT, and the New York Department of Environmental Conservation. The data are formatted as a single csv (comma separated values) or zipped csv. For modeling...
thumbnail
Several models were used to improve water temperature prediction in the Delaware River Basin. PRMS-SNTemp was used to predict daily temperatures at 456 stream reaches in the Delaware River Basin. Daily stream temperature predictions for inflow and outflow reaches for Cannonsville and Pepacton reservoirs were pulled aside into a separate csv to be used as inputs to the General Lake Model (GLM). Reservoir outflow predictions and in-reservoir temperature predictions were generated with calibrated models built using GLM v3.1. We calculated a decay rate based on the modeled reservoir outflow temperatures and observed downstream river temperature to estimate the decay of the reservoir influence on stream temperature as...


map background search result map search result map Walleye Thermal Optical Habitat Area (TOHA) of selected Minnesota lakes: 1 Lake information for 881 lakes Walleye Thermal Optical Habitat Area (TOHA) of selected Minnesota lakes: 6 model evaluation Walleye Thermal Optical Habitat Area (TOHA) of selected Minnesota lakes: 7 thermal and optical habitat estimates Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 1 Lake information for 2,332 lakes Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 5 Model predictions Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 6 model evaluation Predicting water temperature in the Delaware River Basin: 1 Waterbody information for 456 river reaches and 2 reservoirs Predicting water temperature in the Delaware River Basin: 2 Water temperature and flow observations Predicting water temperature in the Delaware River Basin: 4 Model inputs Predicting water temperature in the Delaware River Basin: 5 Model prediction data Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 2 Observations Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 3 Model inputs Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 5 Model predictions Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 6 Model evaluation Multi-task Deep Learning for Water Temperature and Streamflow Prediction (ver. 1.1, June 2022) 2 Observations: Deep learning approaches for improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed basins 3 Model Forcings: Deep learning approaches for improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed basins Model predictions for heterogeneous stream-reservoir graph networks with data assimilation Data to support near-term forecasts of stream temperature using process-guided deep learning and data assimilation Data to support near-term forecasts of stream temperature using process-guided deep learning and data assimilation Model predictions for heterogeneous stream-reservoir graph networks with data assimilation Predicting water temperature in the Delaware River Basin: 2 Water temperature and flow observations Predicting water temperature in the Delaware River Basin: 4 Model inputs Predicting water temperature in the Delaware River Basin: 5 Model prediction data Predicting water temperature in the Delaware River Basin: 1 Waterbody information for 456 river reaches and 2 reservoirs Walleye Thermal Optical Habitat Area (TOHA) of selected Minnesota lakes: 7 thermal and optical habitat estimates Walleye Thermal Optical Habitat Area (TOHA) of selected Minnesota lakes: 1 Lake information for 881 lakes Walleye Thermal Optical Habitat Area (TOHA) of selected Minnesota lakes: 6 model evaluation Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 5 Model predictions Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 6 model evaluation Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 1 Lake information for 2,332 lakes Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 2 Observations Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 3 Model inputs Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 5 Model predictions Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 6 Model evaluation 2 Observations: Deep learning approaches for improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed basins 3 Model Forcings: Deep learning approaches for improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed basins Multi-task Deep Learning for Water Temperature and Streamflow Prediction (ver. 1.1, June 2022)