Skip to main content
Advanced Search

Filters: Categories: Data (X) > Types: OGC WMS Service (X) > partyWithName: GHSC Data Steward (X)

47 results (8ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
This data release includes time-series data from a monitoring site located in a small drainage basin in the Arroyo Seco watershed in Los Angeles County, CA, USA (N3788964 E389956, UTM Zone 11, NAD83). The site was established after the 2009 Station Fire and recorded a series debris flows in the first winter after the fire. The data include three types of time-series: (1) 1-minute time series of rainfall, soil water content, channel bed pore pressure and temperature, and flow stage recorded by radar and laser distance meters (ArroyoSecoContinuous.csv); (2) 10-Hz time series of flow stage recorded by the laser distance meter during rain storms (ArroyoSecoStormLaser.csv), and (3) 2-second time series of rainfall and...
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
This dataset contains the supplemental information for the article "Oklahoma experiences largest earthquake during ongoing regional wastewater injection hazard mitigation efforts" published in Geophysical Research Letters (Yeck and others, 2017). Included is a table of relocated earthquake hypocenters and the velocity model used in the event relocations. These locations form the basis of the analysis presented in the article.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
This Data Release includes information to support the characterization of surface/near-surface infiltration rates of selected landslide source area materials following Hurricane Maria across Puerto Rico, USA. The dataset includes comma-delimited measurements of field-saturated hydraulic conductivity (Kfs) collected over two field campaigns (Fall 2018 and Spring 2019) as well as laboratory-derived measurements of soil/saprolite texture. The Kfs experiments were conducted within (or in the vicinity of) landslide source areas across the three primary geologic terranes on the island (Bawiec, 1998), including intrusive, volcaniclastic, and submarine basalt/chert lithologies. Depending on site conditions and the hydrologic...


map background search result map search result map Catalog of relocated earthquake hypocenters and local velocity model for the 2016 Mw 5.8 Pawnee, Oklahoma, sequence Post-wildfire debris-flow monitoring data, Arroyo Seco, 2009 Station Fire, Los Angeles County, California, November 2009 to March 2010. Field data used to support numerical simulations of variably-saturated flow focused on variability in soil-water retention properties for the U.S. Geological Survey Bay Area Landslide Type (BALT) Site #1 in the East Bay region of California, USA Slab2 - A Comprehensive Subduction Zone Geometry Model, Calabria Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Caribbean Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Cotabato Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Hellenic Arc Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Himalaya Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Manila Trench Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Pamir Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Ryukyu Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Puysegur Region Slab2 - A Comprehensive Subduction Zone Geometry Model, South America Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Scotia Sea Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Solomon Islands Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Sulawesi Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Sumatra-Java Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Vanuatu Region Infiltration data collected post-Hurricane Maria across landslide source area materials, Puerto Rico, USA An updated stress map of the continental U.S. reveals heterogeneous intraplate stress Field data used to support numerical simulations of variably-saturated flow focused on variability in soil-water retention properties for the U.S. Geological Survey Bay Area Landslide Type (BALT) Site #1 in the East Bay region of California, USA Catalog of relocated earthquake hypocenters and local velocity model for the 2016 Mw 5.8 Pawnee, Oklahoma, sequence Slab2 - A Comprehensive Subduction Zone Geometry Model, Pamir Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Cotabato Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Calabria Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Sulawesi Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Puysegur Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Scotia Sea Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Solomon Islands Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Hellenic Arc Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Vanuatu Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Manila Trench Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Caribbean Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Himalaya Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Ryukyu Region An updated stress map of the continental U.S. reveals heterogeneous intraplate stress Slab2 - A Comprehensive Subduction Zone Geometry Model, South America Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Sumatra-Java Region Infiltration data collected post-Hurricane Maria across landslide source area materials, Puerto Rico, USA