Skip to main content
Advanced Search

Filters: Categories: Project (X) > Extensions: Project (X) > partyWithName: Sasha C Reed (X)

9 results (41ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Tropical forests contain > 50% of the world’s known species (Heywood 1995), 55% of global forest biomass (Pan et al. 2011), and exchange more carbon (C), water and energy with the atmosphere than any other ecosystem type (e.g., Saugier et al. 2001). Despite their importance, there is more uncertainty associated with predictions of how tropical forests will respond to warming than for any other biome (Randerson et al. 2009). This uncertainty is of global concern due to the large quantity of C cycled by these forests and the high potential for biodiversity loss. Given the importance of tropical forests, decision makers and land managers around the globe need increased predictive capacity regarding how tropical forests...
thumbnail
Drought and wildfire pose enormous threats to the integrity of natural resources that land managers are charged with protecting. Recent observations and modeling forecasts indicate that these stressors will likely produce catastrophic ecosystem transformations, or abrupt changes in the condition of plants, wildlife, and their habitats, in regions across the country in coming decades. In this project, researchers will bring together land managers who have experienced various degrees of ecosystem transformation (from not yet experiencing any changes to seeing large changes across the lands they manage) to share their perspectives on how to mitigate large-scale changes in land condition. The team will conduct surveys...
thumbnail
Plants convert carbon dioxide into sugars for food during photosynthesis, and this provides food for all animal life. However, photosynthesis is inhibited when a plant’s enzymes use oxygen instead of carbon dioxide. To avoid this use of oxygen, some plants developed a photosynthetic adaptation – called C4 photosynthesis – to concentrate carbon dioxide around the enzymes. While less than 5% of plants use the C4 photosynthetic pathway, they make up ~20% of global terrestrial gross primary productivity. Due to their high productivity, C4 plants have a profound impact on ecosystems, economies, the carbon cycle, and our climate. Corn and sugarcane are both C4 plants, as are foundational western livestock and wildlife...
thumbnail
Biological nitrogen fixation (BNF) is a critical biogeochemical process that converts inert atmospheric N2 gas into biologically usable forms of the essential nutrient nitrogen. A variety of free-living and symbiotic organisms carry out BNF, and in most regions worldwide, BNF is the largest source of nitrogen that fuels terrestrial ecosystems. As a result, BNF has far reaching effects on ecosystem properties (water quality, carbon storage), sustainability (plant growth, soil fertility), and the global climate system. Despite this cross-cutting importance, existing syntheses of BNF have major gaps, with particular challenges in upscaling local measurements across large areas. These gaps, and a corresponding lack...
thumbnail
Rangeland systems are some of our nation’s largest providers of agro-ecological services, sustaining plant productivity that is highly variable across seasons and years. Although the ability to predict the upcoming growing season’s rangeland productivity would have enormous economic and management value – such as for making decisions about cattle stocking rates, fire, restoration, and wildlife – the ability to provide these forecasts has remained poor. New remote sensing and modeling technologies allow for dramatic improvements to near-term forecasts of rangeland productivity. With this project, our multi-disciplinary team has shown that, compared with traditional remote sensing greenness indices, NIRv-based (NIR...
thumbnail
Pinyon-juniper woodlands are important ecosystems in the western U.S. that provide numerous critical environmental, economic, and cultural benefits. For example, pinyon pines are a significant cultural resource for multiple Native American Tribes and provide necessary habitat for plants and wildlife (including at risk species, such as the pinyon-jay). Despite their importance, stress put on pinyon-juniper woodlands by wildfires and other interacting effects of climate change are causing major population declines of these woodland trees. Such changes to pinyon-juniper woodlands lead to uncertainty for land managers on best practices for protecting these ecosystems from stand replacing fire (where most or all of...
thumbnail
Drylands are integral to the Earth system and the present and future of human society. Drylands encompass more than 40% of the terrestrial landmass and support 34% of the world’s human population. Biocrusts are the “living skin” of Earth’s drylands, sometimes dominating the ground cover and figuring prominently in ecosystem structure and function. Biocrusts are a biological aggregate of cyanobacteria, fungi, algae, lichens and mosses in the surface millimeters of soil. By aggregating soil, biocrusts make sediment less erodible. They also strongly influence the water runoff-infiltration balance. In some ecosystems they generate runoff, whereas in other systems they enhance water capture. Vascular plant germination,...
Fire has increased dramatically across the western U.S. and these increases are expected to continue. With this reality, it is critical that we improve our ability to forecast the timing, extent, and intensity of fire to provide resource managers and policy makers the information needed for effective decisions. For example, an advanced, spatially-explicit prediction of the upcoming fire season would support the planning and prioritization of fire-fighting crews, the placement and abundance of fire breaks, and the amount and type of seed needed for post-fire restoration. While the Southwest has seen exceptional increases in fire, these drier ecosystems are also notably difficult for fire predictions because of unique...
thumbnail
Rangeland ecosystems are one of the largest single providers of agro-ecological services in the U.S. The plant growth of these rangelands helps determine the amount of forage available for our livestock and for wildlife, as well as information about fire likelihood and restoration opportunities. However, every spring, ranchers and other rangeland managers face the same difficult challenge —trying to approximate how much and where grass will be available during the upcoming growing season. This project represents an innovative grassland productivity forecasting tool, named “Grass-Cast”, which we are developing for the US Southwest to help managers and producers in the region reduce this economically important source...


    map background search result map search result map Determining Successful Management and Restoration Strategies for Pinyon-Juniper Communities in the Face of Changing Climate and Wildfire Learning From the Past and Planning for the Future: Experience-Driven Insight Into Managing for Ecosystem Transformations Induced by Drought and Wildfire Determining Successful Management and Restoration Strategies for Pinyon-Juniper Communities in the Face of Changing Climate and Wildfire Learning From the Past and Planning for the Future: Experience-Driven Insight Into Managing for Ecosystem Transformations Induced by Drought and Wildfire