Skip to main content
Advanced Search

Filters: Categories: Publication (X) > Types: Citation (X) > Types: Journal Citation (X) > partyWithName: Bowker, Matthew A (X)

11 results (23ms)   

View Results as: JSON ATOM CSV
thumbnail
Summers on the Colorado Plateau (USA) are typified by harsh conditions such as high temperatures, brief soil hydration periods, and high UV and visible radiation. We investigated whether community composition, physiological status, and pigmentation might vary in biological soil crusts as a result of such conditions. Representative surface cores were sampled at the ENE, WSW, and top microaspects of 20 individual soil crust pedicels at a single site in Canyonlands National Park, Utah, in spring and fall of 1999. Frequency of cyanobacterial taxa, pigment concentrations, and dark adapted quantum yield [F(v)/F(m)] were measured for each core. The frequency of major cyanobacterial taxa was lower in the fall compared to...
Question: Can a simple soil classification method, accessible to non-experts, be used to infer properties of the biological soil crust (BSC) communities such as species richness, evenness, and structure? Location: Grand Staircase-Escalante National Monument, an arid region of the Colorado Plateau, USA. Methods: Biological soil crusts are highly functional soil surface communities of mosses, lichens and cyanobacteria that are vulnerable to soil surface disturbances such as grazing. We sampled BSC communities at 114 relatively undisturbed sites. We developed an eight-tier BSC habitat classification based upon soil properties including texture, carbonate and gypsum content, and presence of shrinking-swelling clays....
Recent research suggests that micronutrients such as Mn may limit growth of slow-growing biological soil crusts (BSCs) in some of the drylands of the world. These soil surface communities contribute strongly to arid ecosystem function and are easily degraded, creating a need for new restoration tools. The possibility that Mn fertilization could be used as a restoration tool for BSCs has not been tested previously. We used microcosms in a controlled greenhouse setting to investigate the hypothesis that Mn may limit photosynthesis and consequently growth in Collema tenax, a dominant N-fixing lichen found in BSCs worldwide. We found no evidence to support our hypothesis; furthermore, addition of other nutrients (primarily...
In some arid regions, rehabilitation of whole system N-fixation may be strongly facilitated by the recovery of populations of the lichen genus Collema. Identification of the limits to recovery of Collema in apparently suitable habitat should inform selection of rehabilitation techniques. We simultaneously tested the relative importance of three hypothetical limits to Collema recovery: active erosion, resource limitation, and propagule scarcity. We found that in our experimental system, active erosion had no effect on short-term establishment of Collema, whereas propagule addition did enhance recovery and microhabitat (a resource availability gradient) also exerted a strong influence. It is possible that attempts...
Biological soil crust (BSC) communities (composed of lichens, bryophytes, and cyanobacteria) may be more dynamic on short-time scales than previously thought, requiring new and informative short-term monitoring techniques. We used repeat digital photography and image analysis, which revealed a change in area of a dominant BSC lichen, Collema tenax. The data generated correlated well with gross photosynthesis (r=0.57) and carotenoid content (r=0.53), two variables that would be expected to be positively related to lichen area. We also extracted fatty acids from lichen samples and identified useful phospholipid fatty acid (PLFA) indicators for the Collema mycobiont (20:1, 15:0, 23:0), and the Collema photobiont (18:3?3)....
thumbnail
Biological soil crusts are a diverse soil surface community, prevalent in semiarid regions, which function as ecosystem engineers and perform numerous important ecosystem services. Loss of crusts has been implicated as a factor leading to accelerated soil erosion and other forms of land degradation. To support assessment and monitoring efforts aimed at ensuring the sustainability of rangeland ecosystems, managers require spatially explicit information concerning potential cover and composition of biological soil crusts. We sampled low disturbance sites in Grand Staircase?Escalante National Monument (Utah, USA) to determine the feasibility of modeling the potential cover and composition of biological soil crusts...
thumbnail
Conservation prioritization usually focuses on conservation of rare species or biodiversity, rather than ecological processes. This is partially due to a lack of informative indicators of ecosystem function. Biological soil crusts (BSCs) trap and retain soil and water resources in arid ecosystems and function as major carbon and nitrogen fixers; thus, they may be informative indicators of ecosystem function. We created spatial models of multiple indicators of the diversity and function of BSCs (species richness, evenness, functional diversity, functional redundancy, number of rare species, number of habitat specialists, nitrogen and carbon fixation indices, soil stabilization, and surface roughening) for the 800,000-ha...
Biological soil crusts (BSCs) are ubiquitous lichen?bryophyte microbial communities, which are critical structural and functional components of many ecosystems. However, BSCs are rarely addressed in the restoration literature. The purposes of this review were to examine the ecological roles BSCs play in succession models, the backbone of restoration theory, and to discuss the practical aspects of rehabilitating BSCs to disturbed ecosystems. Most evidence indicates that BSCs facilitate succession to later seres, suggesting that assisted recovery of BSCs could speed up succession. Because BSCs are ecosystem engineers in high abiotic stress systems, loss of BSCs may be synonymous with crossing degradation thresholds....
thumbnail
Desertification is a global problem, costly to national economies and human societies. Restoration of biological soil crusts (BSCs) may have an important role to play in the reversal of desertification due to their ability to decrease erosion and enhance soil fertility. To determine if there is evidence that lower fertility may hinder BSC recolonization, we investigated the hypothesis that BSC abundance is driven by soil nutrient concentrations. At a regional scale (north and central Colorado Plateau, USA), moss and lichen cover and richness are correlated with a complex water?nutrient availability gradient and have approximately six-fold higher cover and approximately two-fold higher species richness on sandy soils...
thumbnail
Communities of plants, biological soil crusts (BSCs), and arbuscular mycorrhizal (AM) fungi are known to influence soil stability individually, but their relative contributions, interactions, and combined effects are not well understood, particularly in arid and semiarid ecosystems. In a landscape-scale field study we quantified plant, BSC, and AM fungal communities at 216 locations along a gradient of soil stability levels in southern Utah, USA. We used multivariate modeling to examine the relative influences of plants, BSCs, and AM fungi on surface and subsurface stability in a semiarid shrubland landscape. Models were found to be congruent with the data and explained 35% of the variation in surface stability...
Soil erosion and subsequent degradation has been a contributor to societal collapse in the past and is one of the major expressions of desertification in arid regions. The revised universal soil loss equation (RUSLE) models soil lost to water erosion as a function of climate erosivity (the degree to which rainfall can result in erosion), topography, soil erodibility, and land use/management. The soil erodibility factor (K) is primarily based upon inherent soil properties (those which change slowly or not at all) such as soil texture and organic matter content, while the cover/management factor (C) is based on several parameters including biological soil crust (BSC) cover. We examined the effect of two more precise...


    map background search result map search result map Spatial Modeling of Biological Soil Crusts to Support Rangeland Assessment and Monitoring Prioritizing Conservation Effort through the Use of Biological Soil Crusts as Ecosystem Function Indicators in an Arid Region Evidence for micronutrient limitation of biological soil crusts- Importance to arid-lands restoration Untangling the biological contributions to soil stability in semiarid shrublands Temporal variation in community composition, pigmentation, and F(v)/F(m) of desert cyanobacterial soil crusts. Temporal variation in community composition, pigmentation, and F(v)/F(m) of desert cyanobacterial soil crusts. Prioritizing Conservation Effort through the Use of Biological Soil Crusts as Ecosystem Function Indicators in an Arid Region Spatial Modeling of Biological Soil Crusts to Support Rangeland Assessment and Monitoring Untangling the biological contributions to soil stability in semiarid shrublands Evidence for micronutrient limitation of biological soil crusts- Importance to arid-lands restoration