Skip to main content
Advanced Search

Filters: Types: ArcGIS REST Map Service (X) > partyWithName: Michael J Osland (X)

8 results (12ms)   

View Results as: JSON ATOM CSV
In the next 100 years, accelerated sea-level rise (SLR) and urbanization will greatly modify coastal landscapes across the globe. More than one-half of coastal wetlands in the contiguous United States are located along the Gulf of Mexico coast. In addition to supporting fish and wildlife habitat, these highly productive wetlands support many ecosystem goods and services including storm protection, recreation, clean water, and carbon sequestration. Historically, tidal saline wetlands (TSWs) have adapted to sea-level fluctuations through lateral and vertical movement on the landscape. As sea levels rise in the future, some TSWs will adapt and migrate landward in undeveloped low-lying areas where migration corridors...
In the next 100 years, accelerated sea-level rise (SLR) and urbanization will greatly modify coastal landscapes across the globe. More than one-half of coastal wetlands in the contiguous United States are located along the Gulf of Mexico coast. In addition to supporting fish and wildlife habitat, these highly productive wetlands support many ecosystem goods and services including storm protection, recreation, clean water, and carbon sequestration. Historically, tidal saline wetlands (TSWs) have adapted to sea-level fluctuations through lateral and vertical movement on the landscape. As sea levels rise in the future, some TSWs will adapt and migrate landward in undeveloped low-lying areas where migration corridors...
This data release contains land cover-derived statistics regarding estuarine vegetated wetland area change within estuary drainage areas along the conterminous U.S. This dataset includes net change in estuarine vegetated wetland area based on National Oceanic and Atmospheric Administration's (NOAA) Coastal Change Assessment Program (C-CAP) 1996 and 2016 land cover data. Net change was assessed between estuarine vegetated wetlands (i.e., estuarine marshes, mangroves, non-mangrove estuarine woody wetlands, and salt pannes, depending on vegetation coverage and type) and the following other landcover classes: 1) water; 2) unconsolidated shore; 3) freshwater woody wetlands; 4) freshwater marsh; 5) upland; and 6) agriculture....
thumbnail
Recent data syntheses have clarified future relative sea-level rise exposure and sensitivity thresholds for drowning. We integrated these advances to estimate when and where rising sea levels could cross thresholds for initiating wetland drowning across the conterminous United States. We evaluated three sea-level rise thresholds for wetland drowning (4, 7, and 10 mm/yr). Our study area spans the coastal conterminous United States, which includes Washington, D.C. and 22 coastal states along the Pacific Ocean, Gulf of Mexico, and Atlantic Ocean. Within the study area, we created a grid of 168 1-degree resolution cells for data acquisition and analyses. We examined three alternative sea-level rise scenarios, the Intermediate-Low,...
In the next 100 years, accelerated sea-level rise (SLR) and urbanization will greatly modify coastal landscapes across the globe. More than one-half of coastal wetlands in the contiguous United States are located along the Gulf of Mexico coast. In addition to supporting fish and wildlife habitat, these highly productive wetlands support many ecosystem goods and services including storm protection, recreation, clean water, and carbon sequestration. Historically, tidal saline wetlands (TSWs) have adapted to sea-level fluctuations through lateral and vertical movement on the landscape. As sea levels rise in the future, some TSWs will adapt and migrate landward in undeveloped low-lying areas where migration corridors...
In the next 100 years, accelerated sea-level rise (SLR) and urbanization will greatly modify coastal landscapes across the globe. More than one-half of coastal wetlands in the contiguous United States are located along the Gulf of Mexico coast. In addition to supporting fish and wildlife habitat, these highly productive wetlands support many ecosystem goods and services including storm protection, recreation, clean water, and carbon sequestration. Historically, tidal saline wetlands (TSWs) have adapted to sea-level fluctuations through lateral and vertical movement on the landscape. As sea levels rise in the future, some TSWs will adapt and migrate landward in undeveloped low-lying areas where migration corridors...
In the next 100 years, accelerated sea-level rise (SLR) and urbanization will greatly modify coastal landscapes across the globe. More than one-half of coastal wetlands in the contiguous United States are located along the Gulf of Mexico coast. In addition to supporting fish and wildlife habitat, these highly productive wetlands support many ecosystem goods and services including storm protection, recreation, clean water, and carbon sequestration. Historically, tidal saline wetlands (TSWs) have adapted to sea-level fluctuations through lateral and vertical movement on the landscape. As sea levels rise in the future, some TSWs will adapt and migrate landward in undeveloped low-lying areas where migration corridors...
We evaluated changes in mangrove distribution and ecosystem properties in the southeastern United States under climate change using known climate-ecological relationships, recent climate data for the period 1981-2010, and future projected climate data for the period 2071-2100 under two Shared Socio-economic Pathways (SSPs): the SSP2-4.5 and SSP5-8.5 scenarios, which correspond to intermediate and high greenhouse gas emissions scenarios, respectively. We quantified potential mangrove presence, mangrove relative abundance, coastal wetland vegetation height, and coastal wetland vegetation aboveground biomass under recent climatic conditions and under the two alternative future climate scenarios.


    map background search result map search result map Projected mangrove distribution and ecosystem properties in the southeastern United States under climate change When and where could rising seas cross thresholds for initiating wetland drowning across conterminous United States? Projected mangrove distribution and ecosystem properties in the southeastern United States under climate change When and where could rising seas cross thresholds for initiating wetland drowning across conterminous United States?