Skip to main content
Advanced Search

Filters: Types: Citation (X) > Categories: Publication (X) > partyWithName: Collins, Scott L (X)

7 results (54ms)   

View Results as: JSON ATOM CSV
Desert grasslands, which are very sensitive to external drivers like climate change, are areas affected by rapid land degradation processes. In many regions of the world the common form of land degradation involves the rapid encroachment of woody plants into desert grasslands. This process, thought to be irreversible and sustained by biophysical feedbacks of global desertification, results in the heterogeneous distribution of vegetation and soil resources. Most of these shrub-grass transition systems at the desert margins are prone to disturbances such as fires, which affect the interactions between ecological, hydrological, and land surface processes. Here we investigate the effect of prescribed fires on the landscape...
Shrub encroachment into grass-dominated biomes is occurring globally due to a variety of anthropogenic activities, but the consequences for carbon (C) inputs, storage and cycling remain unclear. We studied eight North American graminoid-dominated ecosystems invaded by shrubs, from arctic tundra to Atlantic coastal dunes, to quantify patterns and controls of C inputs via aboveground net primary production (ANPP). Across a fourfold range in mean annual precipitation (MAP), a key regulator of ecosystem C input at the continental scale, shrub invasion decreased ANPP in xeric sites, but dramatically increased ANPP (>1000gm-2) at high MAP, where shrub patches maintained extraordinarily high leaf area. Concurrently, the...
Water is a key driver of ecosystem processes in aridland ecosystems. Thus, changes in climate could have significant impacts on ecosystem structure and function. In the southwestern US, interactions among regional climate drivers (e.g., El Ni�o Southern Oscillation) and topographically controlled convective storms create a spatially and temporally variable precipitation regime that governs the rate and magnitude of ecosystem processes. We quantified the spatial and temporal distribution of reduced grassland greenness in response to seasonal and annual variation in precipitation at two scales at the Sevilleta Long Term Ecological Research site in central New Mexico, using Normalized Difference Vegetation Index (NDVI)...
Global environmental change is altering temperature, precipitation patterns, and resource availability in aridland ecosystems. In 2006, we established a multifactor global change experiment to determine the interactive effects of nighttime warming, increased atmospheric N deposition, and more frequent occurrence of El Ni�o years on plant community dynamics in a northern Chihuahuan Desert grassland. Here we only report the results of warming and N addition from the first monsoon growing season prior to the imposition of the precipitation treatments. Our passive nighttime warming treatment increased daily minimum temperatures by 1.4?3.0 �C. Fertilization increased NO3N supply, as measured with Root Simulator Probes,...
thumbnail
Rainfall variability is a key driver of ecosystem structure and function in grasslands worldwide. Changes in rainfall patterns predicted by global climate models for the central United States are expected to cause lower and increasingly variable soil water availability, which may impact net primary production and plant species composition in native Great Plains grasslands. We experimentally altered the timing and quantity of growing season rainfall inputs by lengthening inter-rainfall dry intervals by 50%, reducing rainfall quantities by 30%, or both, compared to the ambient rainfall regime in a native tallgrass prairie ecosystem in northeastern Kansas. Over three growing seasons, increased rainfall variability...
Woody plant encroachment is affecting vegetation composition in arid grasslands worldwide and has been associated with a number of environmental drivers and feedbacks. It has been argued that the relatively abrupt character (both in space and in time) of grassland-to-shrubland transitions observed in many drylands around the world might result from positive feedbacks in the underlying ecosystem dynamics. In the case of the Chihuahuan Desert, we show that one such feedback could emerge from interactions between vegetation and microclimate conditions. Shrub establishment modifies surface energy fluxes, causing an increase in nighttime air temperature, particularly during wintertime. The resulting change in winter...
Ring-shaped growth patterns commonly occur in resource-limited arid and semi-arid environments. The spatial distribution, geometry, and scale of vegetation growth patterns result from interactions between biotic and abiotic processes, and, in turn, affect the spatial patterns of soil moisture, sediment transport, and nutrient dynamics in aridland ecosystems. Even though grass ring patterns are observed worldwide, a comprehensive understanding of the biotic and abiotic processes that lead to the formation, growth and breakup of these rings is still lacking. Our studies on patterns of infiltration and soil properties of blue grama (Bouteloua gracilis) grass rings in the northern Chihuahuan desert indicate that ring...


    map background search result map search result map Productivity responses to altered rainfall patterns in a C4-dominated grassland. Productivity responses to altered rainfall patterns in a C4-dominated grassland.