Skip to main content
Advanced Search

Filters: Types: Map Service (X) > partyWithName: Luz Lumb (X)

44 results (12ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Changes in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that accounts for the dominant processes involved in wetland conversion and shoreline modifications during long-term sea level rise (Park et al. 1989; Successive versions of the model have been used to estimate the impacts of sea level rise on the coasts of the U.S. The model was produced by Warren Pinnacle Consulting, Inc. for the U.S. Fish and Wildlife Service. The SLAMM version 6 technical document can be accessed at http://warrenpinacle.com/prof/SLAMM. SLAMM outputs were converted from raster to vector features. Land cover (wetland) types were generalized to MesoHabitat...
thumbnail
The Comprehensive Habitat Type Dataset was developed by merging NOAA Benthic Habitat Atlas (BHA), Ecological Mapping Systems of Texas (aka Texas Ecological Systems Database, TESD), and National Wetlands Inventory (NWI) data within the study area for the ICF 2012 project (CGP LCC 2012-002 Employing the Conservation Design Approach on Sea-Level Rise Impacts on Coastal Avian Habitats along the Central Texas Coast). BHA data was used to depict mangroves, oysters, and patchy, continuous, and discontinuous seagrass beds where BHA existed within the study area. NWI data was used for all wetland/intertidal environments where NWI data existed within the study area. TESD data was used for all upland environments, and weltand/intertidal...
thumbnail
The Comprehensive Habitat Type Dataset was developed by merging NOAA Benthic Habitat Atlas (BHA), Ecological Mapping Systems of Texas (aka Texas Ecological Systems Database, TESD), and National Wetlands Inventory (NWI) data within the study area for the ICF 2012 project (CGP LCC 2012-002 Employing the Conservation Design Approach on Sea-Level Rise Impacts on Coastal Avian Habitats along the Central Texas Coast). BHA data was used to depict mangroves, oysters, and patchy, continuous, and discontinuous seagrass beds where BHA existed within the study area. NWI data was used for all wetland/intertidal environments where NWI data existed within the study area. TESD data was used for all upland environments, and weltand/intertidal...
thumbnail
County- wide DEMs at 5m resolution were provided by TNRIS and mosaicked clipped to the study area. This DEM was then used to develop 1- and 2- meter contours to assist in evaluating potential sea level rise scenarios in areas not covered by the SLAMM model run. A low-pass filter was first applied to the DEM to remove any major outliers within the elevation raster. The DEM was then reclassified according to elevation, separating the DEM into 4 classes: minimum elevation up to 0 m, between 0 m and 1m, between 1 m and 2m, and above 2 m. This reclassified raster was then converted to a polygon feature class. Polygons representing 0-1 m and 1 – 2 m were then exported separately, and these were used as 1 and 2 meter elevation...
thumbnail
Changes in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that accounts for the dominant processes involved in wetland conversion and shoreline modifications during long-term sea level rise (Park et al. 1989; Successive versions of the model have been used to estimate the impacts of sea level rise on the coasts of the U.S. The model was produced by Warren Pinnacle Consulting, Inc. for the U.S. Fish and Wildlife Service. The SLAMM version 6 technical document can be accessed at http://warrenpinacle.com/prof/SLAMM. SLAMM outputs were converted from raster to vector features. Land cover (wetland) types were generalized to MesoHabitat...
thumbnail
The Comprehensive Habitat Type Dataset was developed by merging NOAA Benthic Habitat Atlas (BHA), Ecological Mapping Systems of Texas (aka Texas Ecological Systems Database, TESD), and National Wetlands Inventory (NWI) data within the study area for the ICF 2012 project (CGP LCC 2012-002 Employing the Conservation Design Approach on Sea-Level Rise Impacts on Coastal Avian Habitats along the Central Texas Coast). BHA data was used to depict mangroves, oysters, and patchy, continuous, and discontinuous seagrass beds where BHA existed within the study area. NWI data was used for all wetland/intertidal environments where NWI data existed within the study area. TESD data was used for all upland environments, and weltand/intertidal...
thumbnail
Changes in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that accounts for the dominant processes involved in wetland conversion and shoreline modifications during long-term sea level rise (Park et al. 1989; Successive versions of the model have been used to estimate the impacts of sea level rise on the coasts of the U.S. The model was produced by Warren Pinnacle Consulting, Inc. for the U.S. Fish and Wildlife Service. The SLAMM version 6 technical document can be accessed at http://warrenpinacle.com/prof/SLAMM. SLAMM outputs were converted from raster to vector features. Land cover (wetland) types were generalized to MesoHabitat...
thumbnail
Changes in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that accounts for the dominant processes involved in wetland conversion and shoreline modifications during long-term sea level rise (Park et al. 1989; Successive versions of the model have been used to estimate the impacts of sea level rise on the coasts of the U.S. The model was produced by Warren Pinnacle Consulting, Inc. for the U.S. Fish and Wildlife Service. The SLAMM version 6 technical document can be accessed at http://warrenpinacle.com/prof/SLAMM. SLAMM outputs were converted from raster to vector features. Land cover (wetland) types were generalized to MesoHabitat...
thumbnail
The Comprehensive Habitat Type Dataset was developed by merging NOAA Benthic Habitat Atlas (BHA), Ecological Mapping Systems of Texas (aka Texas Ecological Systems Database, TESD), and National Wetlands Inventory (NWI) data within the study area for the ICF 2012 project (CGP LCC 2012-002 Employing the Conservation Design Approach on Sea-Level Rise Impacts on Coastal Avian Habitats along the Central Texas Coast). BHA data was used to depict mangroves, oysters, and patchy, continuous, and discontinuous seagrass beds where BHA existed within the study area. NWI data was used for all wetland/intertidal environments where NWI data existed within the study area. TESD data was used for all upland environments, and weltand/intertidal...
thumbnail
The Comprehensive Habitat Type Dataset was developed by merging NOAA Benthic Habitat Atlas (BHA), Ecological Mapping Systems of Texas (aka Texas Ecological Systems Database, TESD), and National Wetlands Inventory (NWI) data within the study area for the ICF 2012 project (CGP LCC 2012-002 Employing the Conservation Design Approach on Sea-Level Rise Impacts on Coastal Avian Habitats along the Central Texas Coast). BHA data was used to depict mangroves, oysters, and patchy, continuous, and discontinuous seagrass beds where BHA existed within the study area. NWI data was used for all wetland/intertidal environments where NWI data existed within the study area. TESD data was used for all upland environments, and weltand/intertidal...
thumbnail
County- wide DEMs at 5m resolution were provided by TNRIS and mosaicked clipped to the study area. This DEM was then used to develop 1- and 2- meter contours to assist in evaluating potential sea level rise scenarios in areas not covered by the SLAMM model run. A low-pass filter was first applied to the DEM to remove any major outliers within the elevation raster. The DEM was then reclassified according to elevation, separating the DEM into 4 classes: minimum elevation up to 0 m, between 0 m and 1m, between 1 m and 2m, and above 2 m. This reclassified raster was then converted to a polygon feature class. Polygons representing 0-1 m and 1 – 2 m were then exported separately, and these were used as 1 and 2 meter elevation...
thumbnail
The Comprehensive Habitat Type Dataset was developed by merging NOAA Benthic Habitat Atlas (BHA), Ecological Mapping Systems of Texas (aka Texas Ecological Systems Database, TESD), and National Wetlands Inventory (NWI) data within the study area for the ICF 2012 project (CGP LCC 2012-002 Employing the Conservation Design Approach on Sea-Level Rise Impacts on Coastal Avian Habitats along the Central Texas Coast). BHA data was used to depict mangroves, oysters, and patchy, continuous, and discontinuous seagrass beds where BHA existed within the study area. NWI data was used for all wetland/intertidal environments where NWI data existed within the study area. TESD data was used for all upland environments, and weltand/intertidal...
thumbnail
The Comprehensive Habitat Type Dataset was developed by merging NOAA Benthic Habitat Atlas (BHA), Ecological Mapping Systems of Texas (aka Texas Ecological Systems Database, TESD), and National Wetlands Inventory (NWI) data within the study area for the ICF 2012 project (CGP LCC 2012-002 Employing the Conservation Design Approach on Sea-Level Rise Impacts on Coastal Avian Habitats along the Central Texas Coast). BHA data was used to depict mangroves, oysters, and patchy, continuous, and discontinuous seagrass beds where BHA existed within the study area. NWI data was used for all wetland/intertidal environments where NWI data existed within the study area. TESD data was used for all upland environments, and weltand/intertidal...
thumbnail
Sea level rise caused by climate change is an ongoing phenomenon and a concern both locally and worldwide. Low-lying coastal areas are particularly at risk to flooding and inundation, affecting a large proportion of the human population concentrated in these areas as well as natural communities-particularly animal species that depend on these habitats as a key component of their life cycle. While more local, state, and federal governments have become concerned with the potential effects that predicted sea levels will have on their communities and coastal landscapes, more information is needed on the potential effects that changes in sea level will have on coastal habitats and species.ehensive Habitat Type Dataset...
thumbnail
Sea level rise caused by climate change is an ongoing phenomenon and a concern both locally and worldwide. Low-lying coastal areas are particularly at risk to flooding and inundation, affecting a large proportion of the human population concentrated in these areas as well as natural communities-particularly animal species that depend on these habitats as a key component of their life cycle. While more local, state, and federal governments have become concerned with the potential effects that predicted sea levels will have on their communities and coastal landscapes, more information is needed on the potential effects that changes in sea level will have on coastal habitats and species.ehensive Habitat Type Dataset...
thumbnail
The Comprehensive Habitat Type Dataset was developed by merging NOAA Benthic Habitat Atlas (BHA), Ecological Mapping Systems of Texas (aka Texas Ecological Systems Database, TESD), and National Wetlands Inventory (NWI) data within the study area for the ICF 2012 project (CGP LCC 2012-002 Employing the Conservation Design Approach on Sea-Level Rise Impacts on Coastal Avian Habitats along the Central Texas Coast). BHA data was used to depict mangroves, oysters, and patchy, continuous, and discontinuous seagrass beds where BHA existed within the study area. NWI data was used for all wetland/intertidal environments where NWI data existed within the study area. TESD data was used for all upland environments, and weltand/intertidal...
thumbnail
The Comprehensive Habitat Type Dataset was developed by merging NOAA Benthic Habitat Atlas (BHA), Ecological Mapping Systems of Texas (aka Texas Ecological Systems Database, TESD), and National Wetlands Inventory (NWI) data within the study area for the ICF 2012 project (CGP LCC 2012-002 Employing the Conservation Design Approach on Sea-Level Rise Impacts on Coastal Avian Habitats along the Central Texas Coast). BHA data was used to depict mangroves, oysters, and patchy, continuous, and discontinuous seagrass beds where BHA existed within the study area. NWI data was used for all wetland/intertidal environments where NWI data existed within the study area. TESD data was used for all upland environments, and weltand/intertidal...
thumbnail
The Comprehensive Habitat Type Dataset was developed by merging NOAA Benthic Habitat Atlas (BHA), Ecological Mapping Systems of Texas (aka Texas Ecological Systems Database, TESD), and National Wetlands Inventory (NWI) data within the study area for the ICF 2012 project (CGP LCC 2012-002 Employing the Conservation Design Approach on Sea-Level Rise Impacts on Coastal Avian Habitats along the Central Texas Coast). BHA data was used to depict mangroves, oysters, and patchy, continuous, and discontinuous seagrass beds where BHA existed within the study area. NWI data was used for all wetland/intertidal environments where NWI data existed within the study area. TESD data was used for all upland environments, and weltand/intertidal...
thumbnail
Changes in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that accounts for the dominant processes involved in wetland conversion and shoreline modifications during long-term sea level rise (Park et al. 1989; Successive versions of the model have been used to estimate the impacts of sea level rise on the coasts of the U.S. The model was produced by Warren Pinnacle Consulting, Inc. for the U.S. Fish and Wildlife Service. The SLAMM version 6 technical document can be accessed at http://warrenpinacle.com/prof/SLAMM. SLAMM outputs were converted from raster to vector features. Land cover (wetland) types were generalized to MesoHabitat...
thumbnail
Changes in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that accounts for the dominant processes involved in wetland conversion and shoreline modifications during long-term sea level rise (Park et al. 1989; Successive versions of the model have been used to estimate the impacts of sea level rise on the coasts of the U.S. The model was produced by Warren Pinnacle Consulting, Inc. for the U.S. Fish and Wildlife Service. The SLAMM version 6 technical document can be accessed at http://warrenpinacle.com/prof/SLAMM. SLAMM outputs were converted from raster to vector features. Land cover (wetland) types were generalized to MesoHabitat...


map background search result map search result map 0 - 1m Elevation Contour for the Central Texas Coast 1 - 2m Elevation Contour for the Central Texas Coast Final Report: Employing the Conservation Design Approach on Sea-Level Rise Impacts on Coastal Avian Habitats along the Central Texas Coast Avain Comprehensive Habitat Type Dataset for the Central Texas Coast Potential Habitat Use for the Loggerhead Shrike in the Central Texas Coast Potential Habitat Use for the Clapper Rail in the Central Texas Coast Potential Habitat Use for the Hudsonian Godwit in the Central Texas Coast Potential Habitat Use for the Long-billed Curlew in the Central Texas Coast Potential Habitat Use for the Little Blue Heron in the Central Texas Coast Potential Habitat Use for the Mottled Duck in the Central Texas Coast Potential Habitat Use for the Piping Plover in the Central Texas Coast Potential Habitat Use for the Redhead in the Central Texas Coast Potential Habitat Use for the Upland Sandpiper in the Central Texas Coast Seaside Sparrow- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Black Skimmer- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Clapper Rail- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Western Sandpiper- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Wilson's Plover - Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Black Rail- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Webinar: Employing the Conservation Design Approach on Sea-Level Rise Impacts on Coastal Avian Habitats along the Central Texas Coast 0 - 1m Elevation Contour for the Central Texas Coast 1 - 2m Elevation Contour for the Central Texas Coast Final Report: Employing the Conservation Design Approach on Sea-Level Rise Impacts on Coastal Avian Habitats along the Central Texas Coast Avain Comprehensive Habitat Type Dataset for the Central Texas Coast Webinar: Employing the Conservation Design Approach on Sea-Level Rise Impacts on Coastal Avian Habitats along the Central Texas Coast Potential Habitat Use for the Loggerhead Shrike in the Central Texas Coast Potential Habitat Use for the Clapper Rail in the Central Texas Coast Potential Habitat Use for the Hudsonian Godwit in the Central Texas Coast Potential Habitat Use for the Long-billed Curlew in the Central Texas Coast Potential Habitat Use for the Little Blue Heron in the Central Texas Coast Potential Habitat Use for the Mottled Duck in the Central Texas Coast Potential Habitat Use for the Piping Plover in the Central Texas Coast Potential Habitat Use for the Redhead in the Central Texas Coast Potential Habitat Use for the Upland Sandpiper in the Central Texas Coast Black Skimmer- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Clapper Rail- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Black Rail- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Seaside Sparrow- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Western Sandpiper- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Wilson's Plover - Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions