Skip to main content
Advanced Search

Filters: Types: OGC WFS Layer (X) > Extensions: Shapefile (X) > Types: OGC WMS Layer (X) > partyWithName: Michael J Osland (X)

6 results (17ms)   

Filters
View Results as: JSON ATOM CSV
thumbnail
MethodsStudy area: Our initial study area included the entire globe. We began with a seamless grid of cells with a resolution of 0.5 degrees (i.e., ~50 km at the equator). Next, we created polylines representing coastlines using SRTM (Shuttle Radar Topographic Mission) v4.1 global digital elevation model data at a resolution of 250 m (Reuter et al. 2007). We used these coastline polylines to identify and retain cells that intersected the coast. We excluded 192,227 cells that did not intersect the coast. To avoid cells with minimal potential coastal wetland habitat, we used the coastline data to remove an additional 1,056 coastal cells that contained less than or equal to 5% coverage of land. We also removed 176...
thumbnail
Global climate change is leading to large-scale shifts in species’ range limits. For example, rising winter temperatures are shifting the abundance and distributions of tropical, cold sensitive plant species towards higher latitudes. Coastal wetlands provide a prime example of such shifts, with tropical mangrove forests expanding into temperate salt marshes as winter warming alleviates past geographic limits set by cold intolerance. These rapid changes are dynamic and challenging to monitor, and uncertainty remains regarding the extent of mangrove expansion near poleward range limits. Here, we synthesized existing datasets and expert knowledge to assess the current (i.e., 2021) distribution of mangroves near dynamic...
thumbnail
Coastal wetland ecosystems are expected to migrate landward in response to accelerated sea-level rise. However, due to differences in topography and coastal urbanization extent, estuaries vary in their ability to accommodate wetland migration. The landward movement of wetlands requires suitable conditions, such as a gradual slope and land free of urban development. Urban barriers can constrain migration and result in wetland loss (coastal squeeze). For future-focused conservation planning purposes, there is a pressing need to quantify and compare the potential for wetland landward movement and coastal squeeze. For 41 estuaries in the northern Gulf of Mexico (i.e., the USA gulf coast), we quantified and compared...
thumbnail
Macroclimatic drivers, such as temperature and rainfall regimes, greatly influence ecosystem structure and function in tidal saline wetlands. Understanding the ecological influence of macroclimatic drivers is important because it provides a foundation for anticipating the effects of climate change. Tidal saline wetlands include mangrove forests, salt marshes, and salt flats, which occupy similar geomorphic settings but different climatic regimes. However, most global- or regional-scale analyses have treated these wetlands as independent systems. Here we used climate and literature-derived ecological data from all three systems, collected across targeted regional-scale macroclimatic gradients, to test hypotheses...
thumbnail
Macroclimatic drivers, such as temperature and rainfall regimes, greatly influence ecosystem structure and function in tidal saline wetlands. Understanding the ecological influence of macroclimatic drivers is important because it provides a foundation for anticipating the effects of climate change. Tidal saline wetlands include mangrove forests, salt marshes, and salt flats, which occupy similar geomorphic settings but different climatic regimes. However, most global- or regional-scale analyses have treated these wetlands as independent systems. Here we used climate and literature-derived ecological data from all three systems, collected across targeted regional-scale macroclimatic gradients, to test hypotheses...
thumbnail
Coastal wetlands purify water, protect coastal communities from storms, sequester (store) carbon, and provide habitat for fish and wildlife. They are also vulnerable to climate change. In particular, changes in winter climate (warmer temperatures and fewer freeze events) may transform coastal wetlands in the northern Gulf of Mexico, as mangrove forests are expected to expand their range and replace salt marshes. The objective of this research was to evaluate the ecological implications of mangrove forest migration and salt marsh displacement. As part of this project, researchers identified important thresholds for ecosystem changes and highlighted coastal areas in the southeastern U.S. (e.g., Texas, Louisiana,...


    map background search result map search result map Ecological Implications of Mangrove Forest Migration in the Southeastern U.S. Climatic controls on the global distribution, abundance, and species richness of mangrove forests Cell data Point data Landward migration of tidal saline wetlands with sea-level rise and urbanization: a comparison of northern Gulf of Mexico estuaries Mangrove distribution in the southeastern United States in 2021 Mangrove distribution in the southeastern United States in 2021 Ecological Implications of Mangrove Forest Migration in the Southeastern U.S. Landward migration of tidal saline wetlands with sea-level rise and urbanization: a comparison of northern Gulf of Mexico estuaries Point data Cell data Climatic controls on the global distribution, abundance, and species richness of mangrove forests