Skip to main content
Advanced Search

Filters: Types: OGC WFS Layer (X) > partyWithName: Christopher A Mason (X)

27 results (15ms)   

View Results as: JSON ATOM CSV
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring (RIM) Network stations for the period 1985 through 2021. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal network (NTN) stations for the period 1985 through 2020. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). Yields (representing the mass of constituent transported from a unit area of a given watershed) are used to compare the export loads from one basin to another. Yield results are obtained by dividing the annual load (pounds) of a given constituent by the respective watershed area...
thumbnail
Uncertainty of satellite discharge estimates is affected by choice of satellite sensor, hydraulic variable for observation, and discharge estimation algorithm, as well as the availability of ground-calibration data. Site selection is very important for reducing error and uncertainty in both conventional and satellite-based discharge measurements because geomorphic river characteristics have strong control over the relationships between discharge and depth, width, slope, and velocity. A ground-truth data set of 8,445 conventional hydraulic measurements, collected by acoustic Doppler current profilers (ADCP) at 503 stations in the United States was developed to examine correlation between river discharge and river...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations stations for the period 1985 through 2020. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds and were estimated using the WRTDS method with Kalman filtering. To determine the trend in loads, the annual load results are flow...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2020. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds. The files containing all inputs required to run WRTDS for all applicable NTN monitoring stations are provided in the "Attached Files" section....
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring (RIM) Network stations for the period 1985 through 2020. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). Yields (representing the mass of constituent transported from a unit area of a given watershed) are used to compare the export loads from one basin to another. Yield results are obtained by dividing the annual load (pounds) of a given constituent by the respective...
thumbnail
These data were collected to understand the occurrence of Per- and Polyfluoroalkyl Substances (PFAS) in the middle Chickahominy River watershed, Virginia. Specifically, this effort was initiated at selected locations in the middle Chickahominy River watershed to: 1. Determine concentrations of PFAS in surface water; 2. Determine concentrations of PFAS in edible portions of fish; 3. Determine concentrations of PFAS in bed sediment; and 4. Quality Assure all data collected in accordance with USGS policies and publicly release those data as a citable USGS Data Series. Description of Available Datasets: These data are available in four Excel (.xlsx) files that contain water-quality and quality-assurance results....


map background search result map search result map Chesapeake Bay River Input Monitoring Network 1985-2020: Average annual yields Environmental Sampling of Per- and Polyfluoroalkyl Substances in the Middle Chickahominy River Watershed, Virginia, 2021-2022 (ver. 2.0, September 2023) Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2020 (ver. 2.0, January 2023) Chesapeake Bay Nontidal Network 1985-2020: Average annual yields (ver. 2.0, January 2023) Chesapeake Bay Nontidal Network 1985-2020: WRTDS input data (ver. 2.0, January 2023) Selected Inputs of Siting Considerations for Satellite Observation of River Discharge Chesapeake Bay River Input Monitoring Network 1985-2021: Monthly loads Chesapeake Bay River Input Monitoring Network 1985-2020: Average annual yields Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2020 (ver. 2.0, January 2023) Chesapeake Bay Nontidal Network 1985-2020: Average annual yields (ver. 2.0, January 2023) Chesapeake Bay Nontidal Network 1985-2020: WRTDS input data (ver. 2.0, January 2023) Chesapeake Bay River Input Monitoring Network 1985-2021: Monthly loads Selected Inputs of Siting Considerations for Satellite Observation of River Discharge