Skip to main content
Advanced Search

Filters: Types: OGC WFS Layer (X) > partyWithName: Natural Hazards (X) > Types: OGC WMS Layer (X)

723 results (16ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
A key input for probabilistic seismic hazard analysis (PSHA) is geologic slip rate data. Here, we compile all geologic slip rates that are reportedly used in U.S. National Seismic Hazard Map (NSHM) releases from 1996, 2002, 2007, 2008, and 2014. Although a new NSHM was released in 2018, no changes were made in geologic slip rate data used. The geologic slip rates are collated from existing NSHM reports and documentation, and no new data are reported herein. The geologic slip rates are coupled with the fault geometries used in NSHM2014/2018 calculations. The data are presented spatially as a shapefile (SHP), in keyhole markup language (KML) and geoJSON. A readme file accompanies this dataset explaining details of...
thumbnail
This data release contains extent shapefiles for 16 hypothetical slope failure scenarios for a landslide complex at Barry Arm, western Prince William Sound, Alaska. The landslide is likely active due to debuttressing from the retreat of Barry Glacier (Dai and others, 2020) and sits above Barry Arm, posing a tsunami risk in the event of slope failure (Barnhart and others, 2021). Since discovery of the landslide by a citizen scientist in 2020, kinematic structural elements have been mapped (Coe and others, 2020) and ground-based and satellite synthetic aperture radar (SAR) have been used to track ongoing movement at a high spatial resolution (Schaefer and others, 2020; Schaefer and others, 2022). These efforts have...
thumbnail
Grand Falls dune field (GFDF) is located on the Navajo Nation, ~70 km NE of Flagstaff, AZ. This active dune field displays a range of morphologies, including barchans, smaller dunes, and ripples, and is bimodal in composition. The felsic component is likely derived from the Little Colorado River, and the mafic component (basaltic grains) is locally sourced from nearby cinder cones [1]. GFDF is an excellent analog site for both active dunes on Mars and other planetary bodies that have dune-like features (e.g., Venus and Titan). We have set up a meteorological station within the dune field that records temperature, barometric pressure, relative humidity, wind direction, wind speed, solar radiation, and precipitation...
thumbnail
This product provides spatial variations in wave thrust along shorelines in Massachusetts and Rhode Island. Natural features of relevance along the State coast are salt marshes. In recent times, marshes have been eroding primarily through lateral erosion. Wave thrust represents a metric of wave attack acting on marsh edges. The wave thrust is calculated as the vertical integral of the dynamic pressure of waves. This product uses a consistent methodology with sufficient spatial resolution to include the distinct features of each marsh system. Waves under different climatological wind forcing conditions were simulated using the coupled ADCIRC/SWAN model system. The estuarine and bay areas are resolved with horizontal...
thumbnail
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States' coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the USGS Digital Shoreline Analysis System (DSAS), version 5.1 software to calculate rates of change. Keeping a record of historical shoreline positions is an effective method to monitor change over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable to change. This data release, and other associated...
thumbnail
This portion of the USGS data release presents sediment grain-size data from samples collected on the Elwha River delta, Washington, in July 2017 (USGS Field Activity Number 2017-638-FA). Surface sediment was collected on July 20, 2017 at a total of 80 locations using a small ponar, or 'grab', sampler from the R/V Frontier in water depths between about 1 and 17 m around the delta. An additional 31 samples were collected by hand at low tide. A handheld global satellite navigation system (GNSS) receiver was used to determine the locations of sediment samples. Grab samples that yielded less than 50 g of sediment were omitted from analysis. The grain-size distributions of samples that yielded more than 50 g of sediment...
thumbnail
This dataset consists of long-term (less than 68 years) shoreline change rates for the sheltered north coast of Alaska from Icy Cape to Cape Prince of Wales. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.4, an ArcGIS extension developed by the U.S. Geological Survey. Rates of shoreline change were calculated using a linear regression rate-of-change (lrr) method based on available shoreline data between 1948 and 2016. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate rates of change.
thumbnail
This dataset consists of long-term (less than 68 years) shoreline change rates for the exposed coast of the north coast of Alaska from Icy Cape to Cape Prince of Wales. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.4, an ArcGIS extension developed by the U.S. Geological Survey. Rates of shoreline change were calculated using a linear regression rate-of-change (lrr) method based on available shoreline data between 1948 and 2016. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate shoreline change...
thumbnail
In 2015 the U.S. Geological Survey, Pacific Coastal and Marine Science Center, in cooperation with the Alaska Department of Fish and Game (ADFG), collected bathymetry and acoustic-backscatter data near Cross Sound in southeast Alaska using a Reson 7111 multibeam echosounder mounded to the ADFG R/V Solstice. This section of the data release provides the survey tracklines as a GIS shapefile. All files have accompanying FGDC metadata.
thumbnail
The youngest and largest island in the State of Hawaii—the Island of Hawai‘i—is formed by five volcanoes, three of which have erupted within recent geologic history: Mauna Loa, Kīlauea, and Hualālai. This data release provides a chronology for activity and impacts at Mauna Loa, Kīlauea, and Hualālai over approximately the past two and a half centuries. This data release includes a word document, “HI_volcanoes_chronology_description,” that describes the data compilation process and provides simple summary tables of eruptive activity and maps. A CSV file contains the compiled eruption chronology data for all volcanoes—"HI_volcanoes_chronology_data”—references for which are provided in a separate CSV file titled “HI_volcanoes_chronology_references.”...
thumbnail
This database consists of geologic slip rate information and metadata used to constrain NSHM23 geodetic and geologic deformation models.
thumbnail
Time series data of water surface elevation and wave height were acquired at ten locations for 153 days off San Juan, on the north coast of Puerto Rico, in support of a study on the transformation of surface waves and resulting water levels over the coral reefs. The relative placement of sensors on the reefs were as follows: PRI18E01, PRI18W01 – fore reef PRI18E02, PRI18W02 – reef crest PRI18E03, PRI18W03 – outer reef flat PRI18E04, PRI18W04 – middle reef flat PRI18E05, PRI18W05 – inner reef flat PRI18E06 – lagoon PRI18E07 – near-shore
thumbnail
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios...
thumbnail
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios...
thumbnail
This dataset contains projections for Santa Cruz County. CoSMoS makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Data for Central California covers the coastline from Pt. Conception to Golden Gate Bridge. Methods and...
thumbnail
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions) and simulated...
thumbnail
This dataset contains projections of shoreline positions and uncertainty bands for future scenarios of sea-level rise. Projections were made using the Coastal Storm Modeling System - Coastal One-line Assimilated Simulation Tool (CoSMoS-COAST), a numerical model forced with global-to-local nested wave models and assimilated with lidar-derived shoreline vectors. Read metadata carefully.
thumbnail
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average...
thumbnail
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...


map background search result map search result map CoSMoS Central California v3.1 projections of shoreline change due to 21st century sea level rise Surface-sediment grain-size distributions of the Elwha River delta, Washington, July 2017 CoSMoS v3.1 water level projections: 1-year storm in Santa Barbara County Navigation tracklines from a 2015 multibeam survey near Cross Sound, southeast Alaska, during field activity 2015-629-FA CoSMoS v3.1 wave-hazard projections: 1-year storm in San Mateo County San Juan, Puerto Rico, wave and water level data, 2018-2019 CoSMoS v3.1 flood depth and duration projections: 100-year storm in San Francisco County Digital Shoreline Analysis System (DSAS) version 4.4 transects with long-term linear regression rate calculations for the exposed north coast of Alaska, from Icy Cape to Cape Prince of Wales Digital Shoreline Analysis System (DSAS) version 4.4 transects with long-term linear regression rate calculations for the sheltered north coast of Alaska, from Icy Cape to Cape Prince of Wales CoSMoS v3.1 - Santa Cruz County CoSMoS v3.1 wave-hazard projections: 100-year storm in Santa Cruz County CoSMoS v3.1 flood hazard projections: 100-year storm in Santa Cruz County CoSMoS v3.1 flood hazard projections: average conditions in Santa Cruz County Wave thrust values at point locations along the shorelines of Massachusetts and Rhode Island Baseline for the coast of Puerto Rico's main island generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 (ver. 2.0, March 2023) Compilation of geologic slip rate constraints used in 1996—2014 U.S. National Seismic Hazard Models (ver. 2.0, February 2022) NSHM23_EQGeoDB_v2 Imagery and meteorological data from April 2021 to December 2021, Grand Falls Dune Field, Arizona Chronology of recent volcanic activity on the Island of Hawai‘i, Hawaii Hypothetical landslide failure extents for hazard assessment, Barry Arm, western Prince William Sound, Alaska San Juan, Puerto Rico, wave and water level data, 2018-2019 Imagery and meteorological data from April 2021 to December 2021, Grand Falls Dune Field, Arizona Hypothetical landslide failure extents for hazard assessment, Barry Arm, western Prince William Sound, Alaska Surface-sediment grain-size distributions of the Elwha River delta, Washington, July 2017 CoSMoS v3.1 flood depth and duration projections: 100-year storm in San Francisco County CoSMoS v3.1 - Santa Cruz County CoSMoS v3.1 wave-hazard projections: 100-year storm in Santa Cruz County CoSMoS v3.1 flood hazard projections: 100-year storm in Santa Cruz County CoSMoS v3.1 flood hazard projections: average conditions in Santa Cruz County Navigation tracklines from a 2015 multibeam survey near Cross Sound, southeast Alaska, during field activity 2015-629-FA Baseline for the coast of Puerto Rico's main island generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 (ver. 2.0, March 2023) Chronology of recent volcanic activity on the Island of Hawai‘i, Hawaii Wave thrust values at point locations along the shorelines of Massachusetts and Rhode Island CoSMoS Central California v3.1 projections of shoreline change due to 21st century sea level rise Digital Shoreline Analysis System (DSAS) version 4.4 transects with long-term linear regression rate calculations for the sheltered north coast of Alaska, from Icy Cape to Cape Prince of Wales Digital Shoreline Analysis System (DSAS) version 4.4 transects with long-term linear regression rate calculations for the exposed north coast of Alaska, from Icy Cape to Cape Prince of Wales NSHM23_EQGeoDB_v2 Compilation of geologic slip rate constraints used in 1996—2014 U.S. National Seismic Hazard Models (ver. 2.0, February 2022)