Skip to main content
Advanced Search

Filters: Types: OGC WMS Layer (X) > Types: Map Service (X) > partyWithName: Cooperative Water Program (X) > partyWithName: New York Water Science Center (X) > partyWithName: Jason Siemion (X)

4 results (8ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Introduction The upper Esopus Creek watershed is located in the eastern Catskill Mountains of New York State and covers 497 km2 from Slide Mountain, the highest peak in the Catskills at 1,274 m, to the Ashokan Reservoir at 193 m elevation (fig. 1). Suspended sediment and turbidity are primary water quality concerns in the Ashokan Reservoir watershed, part of the New York City Catskill-Delaware water supply system that supplies more than 10 million people a day with clean drinking water. Stream corridor assessments of tributaries to the Upper Esopus Creek by Ulster County Soil and Water Conservation District, New York City Department of Environmental Protection, and State University of New York at New Paltz summer...
thumbnail
The overall goal of this project has been the development of forest health and sensitivity indicators and “1st-generation” maps of potential sensitivity to disturbance for lands within watersheds of the NYC water supply in the Catskill Mountains of New York. The methodologies and data layers created in this effort can now be used to aid management decisions and help determine the extent and magnitude of terrestrial and aquatic responses to acidic deposition. The data products derived from this effort have been produced and documented in such a manner that stakeholders can now use these products for site evaluation as well as to perform more extensive analysis on the suite of readily available GIS and image-based...
thumbnail
Background The Ashokan Reservoir is located in the Catskill Mountains of New York State and is part of New York City’s (NYC) water supply system. The NYC water-supply system is operated by the NYC Department of Environmental Protection (NYCDEP) under a filtration avoidance determination (FAD) issued by the New York State Department of Health. The Ashokan Reservoir watershed is 255 mi2 and is one of two reservoirs in the New York City Catskill Reservoir system and one of six reservoirs in the West-of-Hudson Catskill-Delaware system. The upper Esopus Creek is the primary tributary to the Ashokan Reservoir, with a 192 mi2 watershed from the source, Winnisook Lake, to the Ashokan Reservoir near Boiceville, NY. Suspended-sediment...
thumbnail
Problem Suspended-sediment concentration (SSC) and turbidity are primary water-quality concerns in New York City’s (NYC) water-supply system (U.S. Environmental Protection Agency, 2007). In the NYC water-supply system turbidity is largely caused by clay and silt rather than organic material (Effler et al. 1998, Peng et al. 2002, 2004). Sediment can originate from the watershed land surface and the active stream corridor (the stream bed and its adjacent banks and hillslopes) (Walling 2005). In the upper Esopus Creek watershed, the main source of water to the Ashokan Reservoir, the active stream corridor is the primary source of sediment and turbidity to the stream. Terrestrial sources of sediment and turbidity are...


    map background search result map search result map Effects of Stream Restoration and Bank Stabilization on Suspended Sediment in Tributaries to the Upper Esopus Creek Assessment of Regional Forest Health and Stream and Soil Chemistry Using a Mulit-Scale Approach and New Methods of Remote Sensing Interpretation in the Catskill Mountains of New York Esopus Creek Sediment and Turbidity Study Stony Clove Basin Sediment and Turbidity Monitoring Effects of Stream Restoration and Bank Stabilization on Suspended Sediment in Tributaries to the Upper Esopus Creek Esopus Creek Sediment and Turbidity Study Stony Clove Basin Sediment and Turbidity Monitoring Assessment of Regional Forest Health and Stream and Soil Chemistry Using a Mulit-Scale Approach and New Methods of Remote Sensing Interpretation in the Catskill Mountains of New York