Skip to main content
Advanced Search

Filters: Types: OGC WMS Layer (X) > partyWithName: U.S. Geological Survey (X) > Types: Shapefile (X) > partyWithName: Natural Hazards (X)

101 results (42ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
This data release documents proposed updates to geologic inputs (faults) for the upcoming 2023 National Seismic Hazard Model (NSHM). This version (1.0) conveys differences between 2014 NSHM fault sources and those recently released in the earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 data release by Hatem et al. (2021). A notable difference between the 2014 and 2023 datasets is that slip rates are provided at points for 2023 instead of generalized along the entire fault section length as in 2014; consequently, slip rates are not provided for fault sections in the draft 2023 dataset. Geospatial data (shapefile, kml and geojson) are provided in this data release with...
thumbnail
High-resolution single-channel Chirp and minisparker seismic-reflection data were collected by the U.S. Geological Survey in September and October 2006, offshore Bolinas to San Francisco, California. Data were collected aboard the R/V Lakota, during field activity L-1-06-SF. Chirp data were collected using an EdgeTech 512 chirp subbottom system and were recorded with a Triton SB-Logger. Minisparker data were collected using a SIG 2-mille minisparker sound source combined with a single-channel streamer, and both were recorded with a Triton SB-Logger.
thumbnail
This part of DS 781 presents data for the transgressive contours of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "TransgressiveContours_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between 2010 and 2012, and supplemented with geologic structure (fault) information following the methodology of Wong (2012). Water depths determined from bathymetry data were added to the sediment thickness data to...
thumbnail
This data release supports interpretations of field-observed root distributions within a shallow landslide headscarp (CB1) located below Mettman Ridge within the Oregon Coast Range, approximately 15 km northeast of Coos Bay, Oregon, USA. (Schmidt_2021_CB1_topo_far.png and Schmidt_2021_CB1_topo_close.png). Root species, diameter (greater than or equal to 1 mm), general orientation relative to the slide scarp, and depth below ground surface were characterized immediately following landsliding in response to large-magnitude precipitation in November 1996 which triggered thousands of landslides within the area (Montgomery and others, 2009). The enclosed data includes: (1) tests of root-thread failure as a function of...
thumbnail
This dataset comprises a vector shapefile of the Puerto Rico geologic map from Bawiec et al. (1999), clipped to study areas in the Lares, Utuado, and Naranjito municipalities, with a modified basal contact of the Tertiary Lares Limestone (Tla) re-mapped using a lidar-derived digital elevation model (DEM) (USGS, 2018). The limestone unit of interest forms a prominent break in slope with the underlying geologic units, and this break in slope was mapped as the Tla basal contact. Only the southern contact of the Tla unit was modified. References: Bawiec, W.J., ed., 1999, Geology, geochemistry, geophysics, mineral occurrences and mineral resource assessment for the Commonwealth of Puerto Rico: U.S. Geological Survey...
thumbnail
A model of the lower seismogenic depth distribution of earthquakes in the western United States was developed to support models for seismic hazard assessment that will be included in the 2023 USGS National Seismic Hazard Model. This data release presents a recalibration using the hypocentral depths of events M>1 from the Advanced National Seismic System Comprehensive Earthquake Catalog from 1980 to 2021. For higher precision and better resolution in the model, the data were supplemented with seismicity from southern California that was relocated by Hauksson and others (2012). Along the San Andreas Fault, the deepest seismogenic depths are located at 23 km around the Cholame segment, whereas the shallowest depths...
thumbnail
This database contains geometries and basic parameters for fault sections conisdered in earthquake rupture forecasts and probabilistic seismic hazard models (specifically, NSHM23).
This dataset consists of rate-of-change statistics for the shorelines at Barter Island, Alaska for the time period 1947 to 2020. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.0, an ArcGIS extension developed by the U.S. Geological Survey. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate shoreline change rates.
This data release contains mean high water (MHW) shorelines for sandy beaches along the coast of California for the years 1998/2002, 2015, and 2016. The MHW elevation in each analysis region (Northern, Central, and Southern California) maintained consistency with that of the National Assessment of Shoreline Change. The operational MHW line was extracted from Light Detection and Ranging (LiDAR) digital elevation models (DEMs) using the ArcGIS smoothed contour method. The smoothed contour line was then quality controlled to remove artifacts, as well as remove any contour tool interpretation of human-made infrastructure (such as jetties, piers, and sea walls), using satellite imagery from ArcGIS.
thumbnail
These metadata describe ship navigation tracklines from a 2018 multibeam echosounder survey near Noyo Submarine Canyon and vicinity, southeast Alaska. Data were collected by the National Oceanic and Atmospheric Administration (NOAA) aboard the NOAA survey vessel Fairweather and the data were post-processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) for PCMSC research projects. The tracklines are provided as a GIS shapefile.
thumbnail
Summary This data release contains postprocessed model output from a simulation of hypothetical rapid motion of landslides, subsequent wave generation, and wave propagation. A simulated displacement wave was generated by rapid motion of unstable material into Barry Arm fjord. We consider the wave propagation in Harriman Fjord and Barry Arm, western Prince William Sound (area of interest and place names depicted in Figure 1). We consider only the largest wave-generating scenario presented by Barnhart and others (2021a, 2021b). As in Barnhart and others (2021c), we used a simulation setup similar to Barnhart and others (2021a, 2021b), but our results differ because we used different topography and bathymetry datasets....
thumbnail
This dataset contains simplified fault traces, derived from the lineament mapping, for the Pit River region, northeastern California.
thumbnail
This data publication is a compilation of six different multibeam surveys covering the previously unmapped Queen Charlotte Fault offshore southeast Alaska and Haida Gwaii, Canada. These data were collected between 2005 and 2018 under a cooperative agreement between the U.S. Geological Survey, Natural Resources Canada, and the National Oceanic and Atmospheric Administration. The six source surveys from different multibeam sonars are combined into one terrain model with a 30-m resolution. A complementary polygon shapefile records the extent of each source survey in the output grid.
thumbnail
This portion of the data release contains information on cores that were collected by the U.S. Geological Survey in Kahana Valley, O'ahu, Hawaii in 2015 and 2017. Sites were cored in order to describe wetland stratigraphy and to identify potential tsunami deposits. These cores contain mud, peat, fluvial sands, and marine carbonate sands, reflecting deposition in a variety of coastal environments. PDF files describe twenty-four (24) gouge and ‘Russian’ cores (hand held, side-filling peat augers) that were collected and described in the field. Cores collected in 2017 were described using the Troels-Smith sediment classification scheme (Troels-Smith, 1955; Nelson, 2015). Another pdf file (Kahana_cores_legend.pdf) contains...
thumbnail
This portion of the data release contains information on vibracores that were collected by the U.S. Geological Survey in Pololu Valley, Island of Hawai'i in 2014. Five sites were cored in order to describe wetland stratigraphy and to identify potential tsunami deposits. These vibracores contain mud, peat, fluvial sands, and marine volcanic sands, reflecting deposition in a variety of coastal environments. Two (2) pdf files (VC1.pdf, VC2.pdf) describe vibracores that were split, imaged by a line-scanner camera, scanned to generate computed tomagraphic (CT) images, and visually described. A detailed description of the upper 150 cm of VC1 using the Troels-Smith sediment classification scheme (Troels-Smith, 1955; Nelson,...
thumbnail
These metadata describe ship navigation tracklines from a 2017 multibeam echosounder survey near Noyo Submarine Canyon and Dixon Entrance, southeast Alaska. Data were collected by the National Oceanic and Atmospheric Administration (NOAA) aboard the NOAA survey vessel Fairweather and the data were post-processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) for PCMSC research projects. The tracklines are provided as a GIS shapefile.
thumbnail
This dataset consists of short-term (less than 37 years) shoreline change rates for the exposed coast of the north coast of Alaska from Icy Cape to Cape Prince of Wales. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.4, an ArcGIS extension developed by the U.S. Geological Survey. Rates of shoreline change were calculated using an end point rate-of-change (epr) method based on available shoreline data between 1980 and 2016. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate shoreline change rates.
This dataset includes one vector shapefile delineating the position of the top edge of the coastal permafrost bluffs at Barter Island, Alaska spanning seven decades, between the years of 1950 and 2020. Bluff-edge positions delineated from a combination of aerial photography, declassified satellite photography, and very-high resolution satellite imagery can be used to quantify the movement of the bluff edge through time. These data were used to calculate rates of change every 10 meters alongshore using the Digital Shoreline Analysis System (DSAS) version 5.0. DSAS uses a measurement baseline method to calculate rate-of-change statistics. Transects are cast from the reference baseline to intersect each bluff edge...
thumbnail
Version 2.0 is now available. Please see new data release here: https://doi.org/10.5066/P9AB0TA7. A key input for probabilistic seismic hazard analysis (PSHA) is geologic slip rate data. Yet, no single database exists to house all geologic slip rate data used in these calculations. Here, we compile all geologic slip rates that are reportedly used in U.S. National Seismic Hazard Map (NSHM) releases from 1996, 2002, 2007, 2008, and 2014. Although a new NSHM was released in 2018, no changes were made in geologic slip rate data used. The geologic slip rates are collated from existing NSHM reports and documentation, and no new data are reported herein. The geologic slip rates are coupled with the most up-to-date fault...


map background search result map search result map Vibracore photographs, computed tomography scans, and core-log descriptions from Pololu Valley, Island of Hawaii Core descriptions and sand bed thickness data from Kahana Valley, O'ahu, Hawai'i Chirp and minisparker seismic-reflection data of field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03 Ship navigation tracklines from a 2017 multibeam survey near Noyes Submarine Canyon, southeast Alaska Transgressive Contours--Punta Gorda to Point Arena, California Digital Shoreline Analysis System (DSAS) version 4.4 transects with short-term end-point rate-of-change calculations for the exposed north coast of Alaska, from Icy Cape to Cape Prince of Wales Compilation of geologic slip rate constraints used in 1996—2014 U.S. National Seismic Hazard Maps Mean high water (MHW) shorelines along the coast of California used to calculated shoreline change from 1998 to 2016 Historical coastal bluff edge positions at Barter Island, Alaska for the years spanning 1950 to 2020 Digital Shoreline Analysis System (DSAS) version 5.0 transects with shoreline rate change calculations at Barter Island Alaska, 1947 to 2020 Summary of proposed changes to geologic inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 Polygon shapefile of data sources used to create a bathymetric terrain model of multibeam sonar data collected between 2005 and 2018 along the Queen Charlotte Fault System in the eastern Gulf of Alaska from Cross Sound, Alaska to Queen Charlotte Sound, Canada. (Esri polyon shapefile, UTM 8 WGS 84) Simplified fault traces for seismic hazard, north-central New Mexico Root thread strength, landslide headscarp geometry, and observed root characteristics at the monitored CB1 landslide, Oregon, USA NSHM23_FSD_v2 Simplified fault traces in the Pit River region, northeastern California Simulated inundation extent and depth in Harriman Fjord and Barry Arm, western Prince William Sound, Alaska, resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Data release for the lower seismogenic depth model of western U.S. earthquakes Ship navigation tracklines from a 2018 multibeam survey near Noyes Submarine Canyon, southeast Alaska Modified basal contact of the Tertiary Lares Limestone in the vicinity of Utuado, Puerto Rico, USA, derived from USGS Open-File Report 98-038 Root thread strength, landslide headscarp geometry, and observed root characteristics at the monitored CB1 landslide, Oregon, USA Vibracore photographs, computed tomography scans, and core-log descriptions from Pololu Valley, Island of Hawaii Core descriptions and sand bed thickness data from Kahana Valley, O'ahu, Hawai'i Chirp and minisparker seismic-reflection data of field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03 Simulated inundation extent and depth in Harriman Fjord and Barry Arm, western Prince William Sound, Alaska, resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Simplified fault traces for seismic hazard, north-central New Mexico Simplified fault traces in the Pit River region, northeastern California Ship navigation tracklines from a 2018 multibeam survey near Noyes Submarine Canyon, southeast Alaska Transgressive Contours--Punta Gorda to Point Arena, California Modified basal contact of the Tertiary Lares Limestone in the vicinity of Utuado, Puerto Rico, USA, derived from USGS Open-File Report 98-038 Digital Shoreline Analysis System (DSAS) version 4.4 transects with short-term end-point rate-of-change calculations for the exposed north coast of Alaska, from Icy Cape to Cape Prince of Wales Polygon shapefile of data sources used to create a bathymetric terrain model of multibeam sonar data collected between 2005 and 2018 along the Queen Charlotte Fault System in the eastern Gulf of Alaska from Cross Sound, Alaska to Queen Charlotte Sound, Canada. (Esri polyon shapefile, UTM 8 WGS 84) Mean high water (MHW) shorelines along the coast of California used to calculated shoreline change from 1998 to 2016 Data release for the lower seismogenic depth model of western U.S. earthquakes NSHM23_FSD_v2 Summary of proposed changes to geologic inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 Compilation of geologic slip rate constraints used in 1996—2014 U.S. National Seismic Hazard Maps