Skip to main content
Advanced Search

Filters: Types: OGC WMS Layer (X) > partyWithName: U.S. Geological Survey (X) > partyWithName: Scott C Worland (X)

7 results (586ms)   

View Results as: JSON ATOM CSV
thumbnail
A simple water budget includes precipitation, streamflow, change in storage, evapotranspiration, and residuals: P=Q + ET + ΔS + e. It is essential to include the managed component (i.e., the “human” component) to close the water budget and reduce the magnitude of the residuals from “natural” water budgets. Some of the largest components of managed water withdraws are public supply, irrigation, and thermoelectric. The modified water budget is: P=Q + ET + ΔS + (PS + Irr + TE) + e, where PS is public supply, Irr is irrigation, and TE is thermoelectric water use. This data release contains both the natural and managed components of the water budget for a region within the Apalachicola-Chattahoochee-Flint (ACF) River...
thumbnail
A simple water budget includes precipitation, streamflow, change in storage, evapotranspiration, and residuals: P=Q + ET + ΔS + e. It is essential to include the managed component (i.e., the “human” component) to close the water budget and reduce the magnitude of the residuals from “natural” water budgets. Some of the largest components of managed water withdraws are public supply, irrigation, and thermoelectric. The modified water budget is: P=Q + ET + ΔS + (PS + Irr + TE) + e, where PS is public supply, Irr is irrigation, and TE is thermoelectric water use. This data release contains both the natural and managed components of the water budget for a region within the Apalachicola-Chattahoochee-Flint (ACF) River...
thumbnail
This study is based on contiguous direct normal irradiance information from the National Renewable Energy Laboratory. Specifically, these data represent both 12-month specific average and annual average daily total solar resource averaged over surface cells of 0.1 degrees in both latitude and longitude. Spacing is about 10 kilometers in size. Direct normal irradiance is the amount of solar radiation received per unit area. For more information on direct normal irradiance see Introduction to Micrometeorology (Arya, 2001) or Fundamentals of Atmospheric Physics (Salby, 1996). Following the metadata description by the National Renewable Energy Laboratory, these modeled data are based on hourly radiance images from geostationary...
thumbnail
This study is based on contiguous direct normal irradiance information from the National Renewable Energy Laboratory. Specifically, these data represent both 12-month specific average and annual average daily total solar resource averaged over surface cells of 0.1 degrees in both latitude and longitude. Spacing is about 10 kilometers in size. Direct normal irradiance is the amount of solar radiation received per unit area. For more information on direct normal irradiance see Introduction to Micrometeorology (Arya, 2001) or Fundamentals of Atmospheric Physics (Salby, 1996). Following the metadata description by the National Renewable Energy Laboratory, these modeled data are based on hourly radiance images from geostationary...
thumbnail
This data release provides the data and R scripts used for the 2018 publication titled "Improving predictions of hydrological low-flow indices in ungaged basins using machine learning", Environmental Modeling and Software, https://doi.org/10.1016/j.envsoft.2017.12.021.. There are two .csv files and 14 R-scripts included below. The lowflow_sc_ga_al_gagesII_2015.csv datafile contains the annual minimum seven-day mean streamflow with an annual exceedance probability of 90% (7Q10) for 224 basins in South Carolina, Georgia, and Alabama. The datafile also contains 231 basin characteristics from the Gages II dataset (https://water.usgs.gov/lookup/getspatial?gagesII_Sept2011). The "all_preds.csv" file contains the leave-one-out...
thumbnail
A simple water budget includes precipitation, streamflow, change in storage, evapotranspiration, and residuals: P=Q + ET + ΔS + e. It is essential to include the managed component (i.e., the “human” component) to close the water budget and reduce the magnitude of the residuals from “natural” water budgets. Some of the largest components of managed water withdraws are public supply, irrigation, and thermoelectric. The modified water budget is: P=Q + ET + ΔS + (PS + Irr + TE) + e, where PS is public supply, Irr is irrigation, and TE is thermoelectric water use. This data release contains both the natural and managed components of the water budget for a region within the Apalachicola-Chattahoochee-Flint (ACF) River...
thumbnail
This study is based on contiguous direct normal irradiance information from the National Renewable Energy Laboratory. Specifically, these data represent both 12-month specific average and annual average daily total solar resource averaged over surface cells of 0.1 degrees in both latitude and longitude. Spacing is about 10 kilometers in size. Direct normal irradiance is the amount of solar radiation received per unit area. For more information on direct normal irradiance see Introduction to Micrometeorology (Arya, 2001) or Fundamentals of Atmospheric Physics (Salby, 1996). Following the metadata description by the National Renewable Energy Laboratory, these modeled data are based on hourly radiance images from geostationary...


    map background search result map search result map 7Q10 records and basin characteristics for 224 basins in South Carolina, Georgia, and Alabama (2015) Solar radiation for National Hydrography Dataset, version 2 catchments in the southeastern United States, 1950 - 2010 Natural and managed components of the water-budget from 2008–2012 for 43 HUC10s in the Apalachicola-Chattahoochee-Flint River Basin, Georgia, U.S. Solar radiation for National Hydrography Dataset, version 2 catchments in the southeastern United States, 1950 - 2010 at 12-digit hydrologic unit code (HUC12) pour points Solar radiation for National Hydrography Dataset, version 2 catchments in the southeastern United States, 1950 - 2010 at USGS streamflow-gaging stations Natural and managed components of the water-budget for 2010 for 43 HUC10s in the Apalachicola-Chattahoochee-Flint River Basin, Georgia, U.S. Natural and managed components of the water-budget from 2008–2012 for 43 HUC10s in the Apalachicola-Chattahoochee-Flint River Basin, Georgia, U.S. Natural and managed components of the water-budget from 2008–2012 for 43 HUC10s in the Apalachicola-Chattahoochee-Flint River Basin, Georgia, U.S. Natural and managed components of the water-budget for 2010 for 43 HUC10s in the Apalachicola-Chattahoochee-Flint River Basin, Georgia, U.S. Natural and managed components of the water-budget from 2008–2012 for 43 HUC10s in the Apalachicola-Chattahoochee-Flint River Basin, Georgia, U.S. 7Q10 records and basin characteristics for 224 basins in South Carolina, Georgia, and Alabama (2015) Solar radiation for National Hydrography Dataset, version 2 catchments in the southeastern United States, 1950 - 2010 Solar radiation for National Hydrography Dataset, version 2 catchments in the southeastern United States, 1950 - 2010 at 12-digit hydrologic unit code (HUC12) pour points Solar radiation for National Hydrography Dataset, version 2 catchments in the southeastern United States, 1950 - 2010 at USGS streamflow-gaging stations