Skip to main content
Advanced Search

Filters: Extensions: Shapefile (X) > partyWithName: Kevin E Jackson (X) > Types: OGC WFS Layer (X)

3 results (9ms)   

View Results as: JSON ATOM CSV
thumbnail
Using the horizontal-to-vertical spectral-ratio (HVSR) method, we infer regolith thickness (i.e., depth to bedrock) throughout the Farmington River Watershed, CT, USA. Between Nov. 2019 and Nov. 2020, MOHO Tromino Model TEP-3C (MOHO, S.R.L.) three-component seismometers collected passive seismic recordings along the Farmington River and the upstream West Branch of Salmon Brook. From these recordings, we derived resonance frequencies using the GRILLA software (MOHO, S.R.L.), and then inferred potential regolith thicknesses based on likely shear wave velocities, Vs, intrinsic to the underlying sediment. Three potential shear wave velocities (Vs = 300m/s, 337m/s, 362 m/s) were considered for Farmington River watershed...
thumbnail
We used spatial data from previously mapped preferential groundwater discharges throughout the Farmington River watershed in Connecticut and Massachusetts (https://doi.org/10.5066/P915E8JY) to guide water sample collection at known locations of groundwater discharging to surface water. In 2017 and 2019 - 2021, samples were collected during general river baseflow conditions (July – November, <30.9 cms mean daily discharge (USGS gage 01189995, statistics 2010-2022) when the riverbank discharge points were exposed. We collected a suite of dissolved constituents and stable isotopes of water directly in the shallow saturated sediments of active points of discharge, and coincident stream chemical samples were also collected...
thumbnail
Locations of focused (or ‘preferential’) groundwater discharge to surface water are often hydrologically and ecologically important, yet our ability to predict the spatial distribution and water quality of preferential riverbank discharges is limited at the scale of river networks. To advance the understanding of the physical controls on riverbank groundwater discharge processes, discharge zones can be mapped efficiently using handheld and drone-based thermal infrared cameras. Groundwater discharge locations can be identified based on ‘anomalous’ thermal signatures, such as relatively cold riverbank zones in summer and warm riverbank zones in winter. Thermal infrared imaging can be combined with concurrent direct...


    map background search result map search result map Thermal infrared images of groundwater discharge zones in the Farmington and Housatonic River watersheds (Connecticut and Massachusetts, 2019)(ver. 3.0, January 2023) Passive seismic depth to bedrock data collected along streams of the Farmington River watershed, CT, USA Biogeochemical and source characteristics of preferential groundwater discharge in the Farmington River watershed (Connecticut and Massachusetts, 2017 - 2021) Passive seismic depth to bedrock data collected along streams of the Farmington River watershed, CT, USA Biogeochemical and source characteristics of preferential groundwater discharge in the Farmington River watershed (Connecticut and Massachusetts, 2017 - 2021) Thermal infrared images of groundwater discharge zones in the Farmington and Housatonic River watersheds (Connecticut and Massachusetts, 2019)(ver. 3.0, January 2023)