Skip to main content
Advanced Search

Filters: Contacts: {oldPartyId:17469} (X)

967 results (17ms)   

Filters
Date Range
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Thermokarst lake water temperature and salinity data were collected in 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska. Pond temperatures and salinity (conductivity) were measured along two transects traversing across a wet sedge area. A hand-held YSI 556 MPS (plus or minus 0.5 percent accuracy) with a cable-attached instrument probe was placed in 10-15 cm of water within 1 m of each of the pond edges and allowed to equilibrate, and readings were recorded manually. In all, 35 ponds were sampled over a distance of approximately 1.5 km.
thumbnail
Ferromanganese crust samples were collected via dredge during four oceanographic research cruises to the western equatorial Pacific Ocean. The location (latitude, longitude, depth) and concentrations of 27 major and trace elements in the most recent growth layers of ferromanganese crusts from 57 dredge sites are presented here, as well as select seawater chemistry at each location. These data were used in statistical analyses to determine how oceanographic conditions affect the chemical composition of ferromanganese crusts throughout the region. The changes in ferromanganese crust composition show that modern measurements of these primary oceanographic parameters, as well as paleoceanographic reconstructions, can...
thumbnail
Nearshore surface sediment was collected with a petit ponar grab sampler between April 22 and September 17, 2015, at five sites in Puget Sound, Washington. Four sites were adjacent to the Burlington Northern Santa Fe rail line in urban and non-urban areas, and one site was in an urban area that was not adjacent to the rail line. Total and near-total major, minor, trace, and rare earth element contents of the <0.063 mm sediment fraction were determined by inductively coupled plasma atomic emission spectroscopy and mass spectroscopy. These data accompany Takesue, R.K., and Campbell, P.L., 2019, Contaminant baselines and sediment provenance along the Puget Sound Energy Transport Corridor, 2015: U.S. Geological Survey...
This data release contains water level and velocity measurements from wave runup experiments performed in a laboratory flume setting. Wave-driven water level variability (and runup at the shoreline) is a significant cause of coastal flooding induced by storms. Wave runup is challenging to predict, particularly along tropical coral reef-fringed coastlines due to the steep bathymetric profiles and large bottom roughness generated by reef organisms. The 2012 University of Western Australia Fringing Reef Experiment (UWAFRE) measured water levels and velocities for sixteen wave and offshore (still) water level conditions on a 1:36 geometric scale fringing reef profile with and without bottom roughness. Experiments were...
thumbnail
Multibeam bathymetry and multisparker data were collected along the Queen Charlotte-Fairweather Fault between Icy Point and Dixon Entrance, offshore southeastern Alaska from 2016-05-17 to 2016-06-12.
Categories: Data
thumbnail
Bathymetry and acoustic backscatter data were collected in the San Miguel Passage, Channel Islands, California in August 2007 by the U.S. Geological Survey, Pacific Coastal and Marine Science Center. Data collection was conducted aboard the ship R/V Shearwater as part of the USGS research cruise S-2-07-SC. The San Miguel Passage is within the Channel Islands National Marine Sanctuary, and is the body of water between the two western-most islands of the chain - Santa Rosa and San Miguel Islands. Bathymetry and backscatter data were gridded into 2m-resolution raster and are presented here.
thumbnail
This dataset contains spatial projections of coastal cliff retreat (and associated uncertainty) for future scenarios of sea-level rise (SLR) in Central California. Present-day cliff-edge positions used as the baseline for projections are also included. Projections were made using numerical models and field observations such as historical cliff retreat rate, nearshore slope, coastal cliff height, and mean annual wave power, as part of Coastal Storm Modeling System (CoSMoS). Read metadata carefully.
thumbnail
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions) and simulated...
thumbnail
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios...
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern California...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...


map background search result map search result map CoSMoS 3.0 Phase 2 flood depth and duration projections: 100-year storm in Ventura County CoSMoS 3.0 Phase 2 flood hazard projections: 20-year storm in Ventura County CoSMoS 3.0 Phase 2 ocean-currents hazards: average conditions in Ventura County CoSMoS 3.0 Phase 2 water level projections: average conditions in Ventura County Marine magnetic data from Point Sur to Piedras Blancas, central California, 2011 CoSMoS v3.0 ocean-currents hazards: average conditions in Channel Islands CoSMoS v3.0 wave-hazard projections: 20-year storm in Channel Islands CoSMoS v3.0 wave-hazard projections: average conditions in Channel Islands Bathymetry and acoustic backscatter data collected in 2007 from the San Miguel Passage in the Channel Islands, California CoSMoS Central California v3.1 projections of coastal cliff retreat due to 21st century sea-level rise Inorganic compositional data for fine-grained Puget Sound sediment along the Burlington Northern Santa Fe rail line, September 2015 CoSMoS v3.1 ocean-currents hazards: 1-year storm in San Mateo County CoSMoS v3.1 wave-hazard projections: average conditions in San Mateo County CoSMoS v3.1 flood hazard projections: 20-year storm in San Mateo County Sorbed-water (H2O-) corrected chemistry for ferromanganese crust samples from the western equatorial Pacific Ocean Thermokarst lake water temperature and salinity data collected in 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska CoSMoS v3.1 wave-hazard projections: 100-year storm in Monterey County CoSMoS v3.1 water level projections: 20-year storm in Monterey County Thermokarst lake water temperature and salinity data collected in 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska Bathymetry and acoustic backscatter data collected in 2007 from the San Miguel Passage in the Channel Islands, California CoSMoS 3.0 Phase 2 flood depth and duration projections: 100-year storm in Ventura County CoSMoS 3.0 Phase 2 flood hazard projections: 20-year storm in Ventura County CoSMoS 3.0 Phase 2 ocean-currents hazards: average conditions in Ventura County CoSMoS 3.0 Phase 2 water level projections: average conditions in Ventura County CoSMoS v3.1 wave-hazard projections: 100-year storm in Monterey County CoSMoS v3.1 water level projections: 20-year storm in Monterey County Inorganic compositional data for fine-grained Puget Sound sediment along the Burlington Northern Santa Fe rail line, September 2015 CoSMoS v3.0 ocean-currents hazards: average conditions in Channel Islands CoSMoS v3.0 wave-hazard projections: 20-year storm in Channel Islands CoSMoS v3.0 wave-hazard projections: average conditions in Channel Islands CoSMoS Central California v3.1 projections of coastal cliff retreat due to 21st century sea-level rise Sorbed-water (H2O-) corrected chemistry for ferromanganese crust samples from the western equatorial Pacific Ocean