Skip to main content
Advanced Search

Filters: Contacts: {oldPartyId:1912} (X)

124 results (147ms)   

Filters
Date Range
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different population growth rates among smaller clusters. Equally so, the spatial structure and ecological...
thumbnail
wy_lvl8_coarsescale: Wyoming hierarchical cluster level 8 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
nv_lvl6_coarsescale: Nevada hierarchical cluster level 6 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
Monitoring change in genetic diversity in wildlife populations across multiple scales could facilitate prioritization of conservation efforts. We used microsatellite genotypes from 7,080 previously collected genetic samples from across the greater sage-grouse (Centrocercus urophasianus) range to develop a modelling framework for estimating genetic diversity within a recently developed hierarchically nested monitoring framework (clusters). The majority of these genetic samples (n=6560) were used in previous research (Oyler-McCance et al. 2014; Cross et. al 2018; Row et. al. 2018). Genetic diversity values associated with clusters across multiple scales could facilitate the identification of areas with low genetic...
thumbnail
These data describe the location (terrestrial or aquatic) and activity status (active or inactive) of giant gartersnakes (Thamnophis gigas) by individual and location.
thumbnail
This shapefile represents habitat suitability categories (High, Moderate, Low, and Non-Habitat) derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California during the winter season (November to March), and is a surrogate for habitat conditions during periods of cold and snow.
thumbnail
Spatial associations between marked sage-grouse and existing PMU boundaries were used as an initial starting point for delineating subregions for habitat selection analyses and naming conventions across Nevada and northeastern California. Ultimately, the data were partitioned into 19 subregions based on movement patterns of individual radio-marked sage-grouse for habitat analyses, with each grouse occupying one subregion only. Some subregions contained too few marked sage-grouse for sufficient training data to develop a habitat model, which resulted in the exclusion of seven subregions with fewer than 20 marked sage-grouse or less than 100 telemetry locations. However, data from these excluded ‘non-RSF’ subregions...
thumbnail
Map of cumulative 38-day nest survival predicted from a Bayesian hierarchical shared frailty model of sage-grouse nest fates. The midpoint of coefficient conditional posterior distributions of 38-day nest survival were used for prediction at each 30 meter pixel across the landscape.
thumbnail
These data represent predicted common raven (Corvus corax) density (ravens/square-km) derived from random forest models given field site unit-specific estimates of raven density that were obtained from hierarchical distance sampling models at 43 field site units within the Great Basin region, USA. Fifteen landscape-level predictors summarizing climate, vegetation, topography and anthropogenic footprint were used to predict average raven density at each unit. A raven density of greater than or equal to 0.40 ravens/square-km corresponds to below-average survival rates of sage-grouse (Centrocercus urophasianus) nests. We mapped areas which exceed this threshold within sage-grouse concentration areas to determine where...
thumbnail
We evaluated brood-rearing habitat selection and brood survival of greater sage-grouse (Centrocercus urophasianus; hereafter, sage-grouse) in Long Valley, California, an area where the water rights are primarily owned by the city of Los Angeles and water is used locally to irrigate for livestock. This area thus represents a unique balance between the needs of wildlife and people that could increasingly define future water management. In this study, sage-grouse broods moved closer to the edge of mesic areas and used more interior areas during the late brood-rearing period, selecting for greener areas after 1 July. Mesic areas were particularly important during dry years, with broods using areas farther interior than...
thumbnail
We evaluated nest site selection and nest survival both before and after a fire disturbance occurred. We then combined those surfaces to determine the areas which were most heavily impacted by the fire.
thumbnail
These data represent habitat selection of greater sage-grouse at the 50 day mark of their brood rearing process. Sage-grouse and their broods were monitored on their own individual time lines, so one group's 50th day may not necessarily be the same as any other bird's 50th day.
thumbnail
A raster representing Greater Sage-grouse (hereafter sage-grouse) space-use and lek abundance. A higher pixel value corresponds to a greater amount of likelihood that the area is utilized by sage-grouse. Values are the result of combining a kernel density estimation on lek abundances with a raster representing distance to lek. The kernel density was calculated using maximum lek abundances observed between the most recent population nadir for the Great Basin region (2013) and the most recent lek counts available (2021). Polygons representing high-space use areas of Greater Sage-grouse (hereafter sage-grouse) space-use and lek abundance. Areas represent the 85 percent isopleth of the abundance and space-use index...
thumbnail
wy_lvl5_coarsescale: Wyoming hierarchical cluster level 5 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
wy_lvl4_moderatescale: Wyoming hierarchical cluster level 4 (moderate-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result...
thumbnail
wy_lvl1_finescale: Wyoming hierarchical cluster level 1 (fine-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
Raster layers depicting the distribution of possible ecological traps to sage-grouse based on the intersection of conifer cover-classes 1 (Greater than 0 up to 10 percent) and 2 (11 up to 20 percent) with high resistance and resilience, and ecological traps within sage-grouse concentration areas and ecological traps in sage-grouse habitat.
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for Nevada during summer, which is a surrogate for habitat conditions during the sage-grouse brood-rearing period.
thumbnail
These data represent an resource selection function (RSF) for translocated sage-grouse in North Dakota during the summer. Human enterprise has led to large‐scale changes in landscapes and altered wildlife population distribution and abundance, necessitating efficient and effective conservation strategies for impacted species. Greater sage‐grouse (Centrocercus urophasianus; hereafter sage‐grouse) are a widespread sagebrush (Artemisia spp.) obligate species that has experienced population declines since the mid‐1900s resulting from habitat loss and expansion of anthropogenic features into sagebrush ecosystems. Habitat loss is especially evident in North Dakota, USA, on the northeastern fringe of sage‐grouse’ distribution,...
thumbnail
Predictions of raven occurrence in the absence of natural environmental effects. Raven point counts were related to landscape covariates using Bayesian hierarchical occupancy models and the means of the posterior distributions for relevant effects were used to generate the predictions.


map background search result map search result map Sub regions for Greater Sage-grouse in Nevada and NE California (August 2014) Summer Season Habitat Suitability Index raster dataset Habitat Type and Activity by Giant Gartersnakes Associated with a Restored Marsh in California Predictions of raven occurrence in the absence of natural environmental effects in the Great Basin, 2007-2016 (Fig. 4A) Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Nevada and Wyoming, Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 6 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 1 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 4 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 5 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 8 (Wyoming), Interim Winter Season Habitat Categories Shapefile Possible Ecological Traps to Sage-grouse in the Bistate Region of California and Nevada Data Maps of Predicted Raven Density and Areas of Potential Impact to Nesting Sage-grouse within Sagebrush Ecosystems of the North American Great Basin Greater Sage-grouse Nest Survival, Nevada and California 2019 Summer RSF of Translocated Greater Sage-grouse in North Dakota, 2017 - 2018 Genotypes and cluster definitions for a range-wide greater sage-grouse dataset collected 2005-2017 (ver 1.1, January 2023) Habitat Suitability Index for Greater Sage-Grouse 50 Days into the Brood Rearing Life Stage, Nevada and California Post-Fire Change in Greater Sage-Grouse Nest Selection and Survival in the Virginia Mountains, Nevada (2018) Selection and Survival of Greater Sage-Grouse Broods in Mesic Areas of Long Valley, California (2003 - 2018) Greater Sage-grouse Abundance and Space-use Index, Nevada and Northeastern California Habitat Type and Activity by Giant Gartersnakes Associated with a Restored Marsh in California Selection and Survival of Greater Sage-Grouse Broods in Mesic Areas of Long Valley, California (2003 - 2018) Post-Fire Change in Greater Sage-Grouse Nest Selection and Survival in the Virginia Mountains, Nevada (2018) Summer RSF of Translocated Greater Sage-grouse in North Dakota, 2017 - 2018 Winter Season Habitat Categories Shapefile Possible Ecological Traps to Sage-grouse in the Bistate Region of California and Nevada Sub regions for Greater Sage-grouse in Nevada and NE California (August 2014) Summer Season Habitat Suitability Index raster dataset Greater Sage-grouse Nest Survival, Nevada and California 2019 Greater Sage-grouse Abundance and Space-use Index, Nevada and Northeastern California Habitat Suitability Index for Greater Sage-Grouse 50 Days into the Brood Rearing Life Stage, Nevada and California Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 1 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 4 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 5 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 8 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 6 (Nevada), Interim Data Maps of Predicted Raven Density and Areas of Potential Impact to Nesting Sage-grouse within Sagebrush Ecosystems of the North American Great Basin Predictions of raven occurrence in the absence of natural environmental effects in the Great Basin, 2007-2016 (Fig. 4A) Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Nevada and Wyoming, Interim Genotypes and cluster definitions for a range-wide greater sage-grouse dataset collected 2005-2017 (ver 1.1, January 2023)