Skip to main content
Advanced Search

Filters: Contacts: {oldPartyId:1912} (X) > partyWithName: Kristy B Howe (X)

10 results (57ms)   

View Results as: JSON ATOM CSV
thumbnail
Predicted common raven (Corvus corax) impacts within greater sage-grouse (Centrocercus urophasianus) concentration areas across the Great Basin, USA, 2007–2016. Predicted impacts were based on a raven density of great than or equal to 0.40 (ravens per square kilometer) which corresponded to below-average survival rates of sage-grouse nests. These data support the following publication: Coates, P.S., O'Neil, S.T., Brussee, B.E., Ricca, M.A., Jackson, P.J., Dinkins, J.B., Howe, K.B., Moser, A.M., Foster, L.J. and Delehanty, D.J., 2020. Broad-scale impacts of an invasive native predator on a sensitive native prey species within the shifting avian community of the North American Great Basin. Biological Conservation,...
thumbnail
Average and standard deviation of annual predicted common raven (Corvus corax) density (ravens per square kilometer) derived from random forest models given field site unit-specific estimates of raven density that were obtained from hierarchical distance sampling models at 43 field site units within the Great Basin region, USA. Fifteen landscape-level predictors summarizing climate, vegetation, topography and anthropogenic footprint were used to predict average raven density at each unit. These data support the following publication: Coates, P.S., O'Neil, S.T., Brussee, B.E., Ricca, M.A., Jackson, P.J., Dinkins, J.B., Howe, K.B., Moser, A.M., Foster, L.J. and Delehanty, D.J., 2020. Broad-scale impacts of an invasive...
thumbnail
Predictions of raven occurrence in the absence of anthropogenic environmental effects. Raven point counts were related to landscape covariates using Bayesian hierarchical occupancy models and the means of the posterior distributions for relevant effects were used to generate the predictions.
thumbnail
These data represent predicted common raven (Corvus corax) density (ravens/square-km) derived from random forest models given field site unit-specific estimates of raven density that were obtained from hierarchical distance sampling models at 43 field site units within the Great Basin region, USA. Fifteen landscape-level predictors summarizing climate, vegetation, topography and anthropogenic footprint were used to predict average raven density at each unit. A raven density of greater than or equal to 0.40 ravens/square-km corresponds to below-average survival rates of sage-grouse (Centrocercus urophasianus) nests. We mapped areas which exceed this threshold within sage-grouse concentration areas to determine where...
thumbnail
Predictions of raven occurrence in the absence of natural environmental effects. Raven point counts were related to landscape covariates using Bayesian hierarchical occupancy models and the means of the posterior distributions for relevant effects were used to generate the predictions.
thumbnail
Expanding human enterprise across remote environments impacts many wildlife species, including sage-grouse (Centrocercus urophasianus), an indicator species whose decline is at the center of national conservation strategies and land use policies. Anthropogenic resources provide subsidies for generalist predators, potentially leading to cascading effects on sensitive prey species at lower trophic levels. In semi-arid western ecosystems, common ravens (Corvus corax) are expanding in distribution and abundance, and may be negatively affecting sage-grouse reproductive success at broad spatial scales. Ravens are a common predator of sage-grouse nests, and potentially prey on chicks as well. This research aimed to address...
thumbnail
A hierarchical occupancy model adapted from Royle & Dorazio (2008) and Rota et al. (2011) for use in R. References: Royle, J.A. and Dorazio, R.M., 2008. Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities. Academic Press. doi:10.1016/B978-0-12-374097-7.50001-5 J. Andrew Royle, Robert M. Dorazio, Rota, C. T., Fletcher Jr, R. J., Dorazio, R. M. and Betts, M. G. (2009), Occupancy estimation and the closure assumption. Journal of Applied Ecology, 46: 1173-1181. doi:10.1111/j.1365-2664.2009.01734.x
thumbnail
Raven point counts were related to landscape covariates using Bayesian hierarchical occupancy models and the mean of the predicted posterior distribution for raven occurrence was used to visualize results.


    map background search result map search result map Data from: Broad-scale occurrence of a subsidized avian predator: reducing impacts of ravens on sage-grouse and other sensitive prey Raven study site locations in the Great Basin, derived from survey locations 2007 - 2016 Predicted probability of raven occurrence across the Great Basin, USA, 2007 – 2016 (Fig. 3) Predictions of raven occurrence in the absence of natural environmental effects in the Great Basin, 2007-2016 (Fig. 4A) Predictions of raven occurrence in the absence of anthropogenic environmental effects in the Great Basin, 2007-2016 (Fig. 4B) Prediction of raven occurrence intersected with high impact areas for sage-grouse populations in the Great Basin, 2007-2016 (Fig. 5A) Hierarchical Occupancy Model Code for R and Accompanying Files Data Maps of Predicted Raven Density and Areas of Potential Impact to Nesting Sage-grouse within Sagebrush Ecosystems of the North American Great Basin Raven Impacts within Greater Sage-grouse Concentration Areas within the Great Basin Region of the United States 2007 - 2016 Average and Standard Deviation of Annual Predicted Raven Density in the Great Basin, Western U.S. Raven study site locations in the Great Basin, derived from survey locations 2007 - 2016 Raven Impacts within Greater Sage-grouse Concentration Areas within the Great Basin Region of the United States 2007 - 2016 Prediction of raven occurrence intersected with high impact areas for sage-grouse populations in the Great Basin, 2007-2016 (Fig. 5A) Hierarchical Occupancy Model Code for R and Accompanying Files Predicted probability of raven occurrence across the Great Basin, USA, 2007 – 2016 (Fig. 3) Data Maps of Predicted Raven Density and Areas of Potential Impact to Nesting Sage-grouse within Sagebrush Ecosystems of the North American Great Basin Average and Standard Deviation of Annual Predicted Raven Density in the Great Basin, Western U.S. Data from: Broad-scale occurrence of a subsidized avian predator: reducing impacts of ravens on sage-grouse and other sensitive prey Predictions of raven occurrence in the absence of natural environmental effects in the Great Basin, 2007-2016 (Fig. 4A) Predictions of raven occurrence in the absence of anthropogenic environmental effects in the Great Basin, 2007-2016 (Fig. 4B)