Skip to main content
Advanced Search

Filters: Contacts: {oldPartyId:1923} (X) > Types: OGC WFS Layer (X)

12 results (86ms)   

View Results as: JSON ATOM CSV
thumbnail
The lack of geographic and thematic maps of coral reefs limits our understanding of reefs and our ability to assess change. The U.S. Geological Survey (USGS) has the capability to compile digital image mosaics that are useful for creating detailed map products. Image maps covering the shallow near-shore coastal waters have been produced for several of the main Hawaiian Islands, including Hawai‘i, Maui, Moloka‘i, and O‘ahu and are presented in JPEG2000 (.jp2) format. The digital-image mosaics were generated by first scanning historical aerial photographs at 1.0 meter-per-pixel resolution. The individually scanned digital images were tone- and color-matched and then combined together using spatial matching. Separately,...
thumbnail
This part of DS 781 presents data for the transgressive contours of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "TransgressiveContours_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between 2010 and 2012, and supplemented with geologic structure (fault) information following the methodology of Wong (2012). Water depths determined from bathymetry data were added to the sediment thickness data to...
thumbnail
This part of DS 781 presents data for the isopachs of the Point Sur to Point Arguello, California, region. The vector data file is included in the “Isopachs_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected between 2008 and 2014, and supplemented with geologic structure (fault and fold) information following the methodology of Wong (2012). Reference Cited: Wong, F. L., Phillips, E.L., Johnson, S.Y., and Sliter, R.W., 2012, Modeling of depth...
thumbnail
This part of DS 781 presents data for the transgressive contours of the Point Sur to Point Arguello, California, region. The vector data file is included in the “TransgressiveContours_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected between 2008 and 2014, and supplemented with geologic structure (fault and fold) information following the methodology of Wong (2012). Water depths determined from bathymetry data were added to the sediment thickness...
thumbnail
This part of DS 781 presents data for the faults of the Point Sur to Point Arguello, California, region. The vector data file is included in the “Faults_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. Faults in the Point Sur to Point Arguello region are identified on seismic-reflection data based on abrupt truncation or warping of reflections and (or) juxtaposition of reflection panels with different seismic parameters such as reflection presence, amplitude, frequency, geometry, continuity, and vertical sequence. Faults were primarily mapped by interpretation of seismic reflection profile data collected by the U.S. Geological Survey between 2008 and 2014.
thumbnail
The lack of geographic and thematic maps of coral reefs limits our understanding of reefs and our ability to assess change. The U.S. Geological Survey (USGS) has the capability to compile digital image mosaics that are useful for creating detailed map products. Image maps covering the shallow near-shore coastal waters have been produced for several of the main Hawaiian Islands, including Hawai‘i, Maui, Moloka‘i, and O‘ahu and are presented in JPEG2000 (.jp2) format. The digital-image mosaics were generated by first scanning historical aerial photographs. At the time, available satellite image resolutions were not acceptable and the aerial photographs used were the best option. The individually scanned digital...
thumbnail
This part of DS 781 presents data for the isopachs of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "Isopachs_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between 2010 and 2012, and supplemented with geologic structure (fault) information following the methodology of Wong (2012). Reference Cited: Wong, F. L., Phillips, E.L., Johnson, S.Y., and Sliter, R.W., 2012, Modeling of depth to base of Last...
thumbnail
The lack of geographic and thematic maps of coral reefs limits our understanding of reefs and our ability to assess change. The U.S. Geological Survey (USGS) has the capability to compile digital image mosaics that are useful for creating detailed map products. Image maps covering the shallow near-shore coastal waters have been produced for several of the main Hawaiian Islands, including Hawai‘i, Maui, Moloka‘i, and O‘ahu and are presented in JPEG2000 (.jp2) format. The digital-image mosaics were generated by first scanning historical aerial photographs. At the time, available satellite image resolutions were not acceptable and the aerial photographs used were the best option. The individually scanned digital...
thumbnail
The lack of geographic and thematic maps of coral reefs limits our understanding of reefs and our ability to assess change. The U.S. Geological Survey (USGS) has the capability to compile digital image mosaics that are useful for creating detailed map products. Image maps covering the shallow near-shore coastal waters have been produced for several of the main Hawaiian Islands, including Hawai‘i, Maui, Moloka‘i, and O‘ahu and are presented in JPEG2000 (.jp2) format. The digital-image mosaics were generated by first scanning historical aerial photographs. At the time, available satellite image resolutions were not acceptable and the aerial photographs used were the best option. The individually scanned digital...
thumbnail
This part of DS 781 presents data for the faults of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "Faults_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. Faults in the Punta Gorda and Point Arena region are identified on seismic-reflection data based on abrupt truncation or warping of reflections and (or) juxtaposition of reflection panels with different seismic parameters such as reflection presence, amplitude, frequency, geometry, continuity, and vertical sequence. Faults were primarily mapped by interpretation of seismic reflection profile data collected by the U.S. Geological Survey between 2010 and 2012.
thumbnail
The lack of geographic and thematic maps of coral reefs limits our understanding of reefs and our ability to assess change. The U.S. Geological Survey (USGS) has the capability to compile digital image mosaics that are useful for creating detailed map products. Image maps covering the shallow near-shore coastal waters have been produced for several of the main Hawaiian Islands, including Hawai‘i, Maui, Moloka‘i, and O‘ahu and are presented in JPEG2000 (.jp2) format. The digital-image mosaics were generated by first scanning historical aerial photographs. At the time, available satellite image resolutions were not acceptable and the aerial photographs used were the best option. The individually scanned digital...
thumbnail
This part of DS 781 presents data for the folds of the Point Sur to Point Arguello, California, region. The vector data file is included in the “Folds_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. Folds in the Point Sur to Point Arguello region are identified on seismic-reflection data based on warping and tilting of reflections. Folds were primarily mapped by interpretation of seismic reflection profile data collected by the U.S. Geological Survey between 2008 and 2014 and interpretation of high-resolution bathymetry data.


    map background search result map search result map Digital image mosaics of the nearshore coastal waters of selected areas on the Hawaiian Islands of Hawai‘i, Maui, Moloka‘i, and O‘ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data Island of Hawai‘i Island of Maui Island of Moloka‘i Island of O‘ahu Isopachs—Point Sur to Point Arguello, California Faults—Point Sur to Point Arguello, California Folds—Point Sur to Point Arguello, California Transgressive Contours—Point Sur to Point Arguello, California Faults--Punta Gorda to Point Arena, California Isopachs--Punta Gorda to Point Arena, California Transgressive Contours--Punta Gorda to Point Arena, California Island of Maui Island of Hawai‘i Transgressive Contours--Punta Gorda to Point Arena, California Faults--Punta Gorda to Point Arena, California Isopachs--Punta Gorda to Point Arena, California Faults—Point Sur to Point Arguello, California Isopachs—Point Sur to Point Arguello, California Folds—Point Sur to Point Arguello, California Transgressive Contours—Point Sur to Point Arguello, California Digital image mosaics of the nearshore coastal waters of selected areas on the Hawaiian Islands of Hawai‘i, Maui, Moloka‘i, and O‘ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data